- P-ISSN 1225-0163
- E-ISSN 2288-8985
This study introduces a novel analytical method for the assessment of pralsetinib impurities and degradation products (DPs), addressing critical gaps in existing methodologies. This research aims to develop a robust HPLC method for impurity analysis, characterize degradation products using LC-MS, and evaluate the environmental impact of the method. The study began by optimizing HPLC conditions with various columns and buffers, ultimately achieving successful separation using an XBridge® RP-C18 column with ethanol as solvent A and 50 mM formic acid at pH 2.9. This setup provided excellent peak resolution and symmetry, essential for reliable stability studies. The developed HPLC method was then adapted for HPLC-MS/MS, enhancing sensitivity and detection efficiency of DPs. Stress degradation studies of pralsetinib under different conditions (acidic, basic, oxidative, thermal, and photolytic) revealed significant degradation under acidic (29.3 %) and basic (21.5 %) conditions, with several DPs identified. Oxidative stress resulted in 19.8 % degradation, while thermal and photolytic conditions caused minimal degradation. HPLC-MS/MS analysis identified structures of five degradation products, providing detailed insights into pralsetinib's stability and degradation pathways. Method validation followed ICH guidelines Q2(R1), confirming method's specificity, selectivity, sensitivity, linearity, accuracy, precision, and robustness. The method exhibited strong linearity with a coefficient of determination (r²) greater than 0.999 for pralsetinib and its impurities. This method advances impurity detection and DPs characterization, ensuring the quality and safety of pralsetinib. Additionally, method's environmental impact was assessed, aligning with sustainable analytical practices. These findings provide essential data on pralsetinib's stability, guiding storage conditions and ensuring its efficacy and safety in pharmaceutical applications.