바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

The Current Distribution and Habitat Preferences of Hibernating Myotis formosus in Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2009, v.32 no.3, pp.191-195




  • Downloaded
  • Viewed

Abstract

We monitored 38 hibernation sites of Myotis formosus in South Korea and recorded the number of bats occupying each site and assessed the micro-climate at the sites during four winters from 2005 to 2009 at. The mean rock temperature of the bat roosting sites was 13.2±1.4℃ and themean body temperature of the hibernating bats was 13.3±1.3℃. The number of hibernating bats was negatively related to the size of the entrance and positively related to the minimum ambient temperature and humidity in the site interior. More bats hibernated in roosts with smaller entrances and higher minimum ambient temperatures, and more bats selected sites presenting a narrow temperature range. This study showed that the internal environments of hibernacula of M. formosus were highly stable despite dramatic variation in the external environment.

keywords
Hibernacula, Hibernation, Myotis formosus, Temperature, Thermal preference, Hibernacula, Hibernation, Myotis formosus, Temperature, Thermal preference

Reference

1.

Boyles JG, Dunbar MB, Storm JJ, Brack V Jr. 2007. Energy availability influences microclimate selection of hibernating bats. J Exp Biol 210: 4345-4350.

2.

Crampton LH, Barclay RMR. 1998. Selection of roosting and foraging habitat by bats in different-aged aspen mixed wood stands. Conserv Biol 12: 1347-1358.

3.

Dalquest WW, Walton DW. 1970. About bats. In Diurnal Retreats of Bats (Dlaughter BH, Walton DW, eds). Dallas, TX: Southern Methodist University Press. pp 162-187.

4.

Fenton MB. 1997. Science and the conservation of bats. J Mammal 78: 1-14.

5.

Geiser F. 2004. Metabolic rate and body temperature reduction during hibernation and daily torpor. Ann Rev Physiol 66: 239-274.

6.

Humphries MM, Thomas DW, Speakman JR. 2002. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418: 313-316.

7.

Hutson AM, Mickleburgh SP, Racey PA. 2001. Microchiropteran bats: Global status survey and conservation action plan. Gland, Switzerland: IUCN/SSC Chiroptera Specialist Group.

8.

Jones AJ Mitchell, McLeish AP. 2004. The Bat Workers’ Manual. Joint Nature Conservation Committee.

9.

Kalcounis MC, Brigham RM. 1998. Secondary use of aspen cavities by tree-roosting big brown bats. J Wildl Manage 62: 603-611.

10.

Kim SS and Yoo JC. 2004. Hibernacula characteristics of Cooperwinged bats (Myotis formosus). Kor J Nat Conserv 2: 76-88.

11.

Kim SS. 2005. Hibernation ecology of Myotis formosus. MS thesis. Kyung Hee University, Seoul. 67 p.

12.

Krebs CJ. 2001. Ecology. 5th ed. Benjamin Cummings, San Francisco.

13.

Kunz TH. 1982. Roosting ecology. In: Ecology of Bats (Kunz TH, ed). Plenum Press, New York, pp 1-46

14.

Kunz TH, Lumsden LF. 2003. Ecology of cavity and foliage roosting bats. In Bat Ecology (Kunz TH, Fenton MB, eds). The University of Chicago Press, Chicago, pp 3-89.

15.

McNab BK. 1974. The behavior of temperate cave bats in a subtropical environment. Ecology 55: 943-958.

16.

O’Donnell CFJ. 2000. Conservation status and causes of decline of the threatened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mammal Rev 30: 89-106.

17.

Pierson ED. 1998. Tall trees, deep holes, and scarred landscapes: conservation biology of North American bats. In Bat Biology and Conservation (Kunz TH, Racey PA, eds). Smithsonian Institution Press, Washington DC, pp 309-325.

18.

Rabe MJ, Morrell TE, Green H, deVos JC Jr, Miller CR. 1998. Characteristics of ponderosa pine snag roosts used by reproductive bats in northern Arizona. J Wildl Manage 62: 612-621.

19.

Richter AR, Humphrey SR, Cope JB, Brack V Jr. 1993. Modified cave entrances: thermal effect on body mass and resulting decline of endangered Indiana bats (Myotis sodalis). Conserv Biol 7:407-415.

20.

Speakman JR, Thomas DW. 2003. Physiological ecology and energetics of bats. In Bat Ecology (Kunz TH, Fenton MB, eds.). The University of Chicago Press, Chicago, pp 430-490.

21.

Thomas DW, Dorais M, Bergeron JM. 1990. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J Mammal 71: 475-479.

22.

Tidemann CR, Flavel SC. 1987. Factors affecting choice of diurnal roost site by tree-hole bats (Microchiroptera) in southeastern Australia. Aust Wildl Res 14: 459-473.

23.

Tuttle MD, Kennedy J. 2002. Thermal requirements during hibernation. In: The Indiana Bat: Biology and Management of an Endangered Species (Kurta A, Kennedy J, eds). Bat Conservation International. pp 68-78.

24.

Tuttle MD, Stevenson D. 1982. Growth and survival of bats. In: Ecology of Bats (Kunz TH, ed). Plenum Press, New York, pp 105- 150.

25.

Vonhoff MJ, Barclay RMR. 1996. Roost-site selection and roosting ecology of forest-dwelling bats in southern British Columbia. Can J Zool 74: 1797-1805.

26.

Vonhoff MJ. 1996. Roost-site preferences of big brown bats (Eptesicus fuscus) and silver-haired bats (Lasionycteris noctivagans) in the Pend d’Oreille Valley in southern British Columbia. In Bats and Forests Symposium (Barclay RMR, Brigham RM, eds). Working paper 23/1996. Research Branch, Ministry of Forests, Victoria, Canada. pp 62-80.

27.

Webb PI, Speakman JR, Racey PA. 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can J Zool 74: 761-765.

28.

Zar JH. 1999. Biostatistical Analysis, 4th ed. Prentice Hall International, London.

Journal of Ecology and Environment