바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.42 No.4

Kassahun Gashu(University of Gondar) ; Yitbarek Muchie(Chilga District Agricultural Office) pp.139-149 https://doi.org/10.1186/s41610-018-0077-0
초록보기
Abstract

Background: Ethiopia is among the poorest countries where land degradation caused livelihood problem to its inhabitants. The livelihood of rural communities in Ethiopia is seriously threatened by land degradation. Land is the major natural resource that economic, social, infrastructure, and other human activities are undertaken on. Thus, land resources play an important role in shaping rural livelihoods, and lack of sustainable land management practices leads to land degradation. Thus, this study aimed to analyze interlink between land degradation and livelihood of rural communities in Chilga district, Northwest Ethiopia. It also addresses the factors which influence income diversification for livelihood of households in the study area. Result: The result depicts that the major causes of land degradation are both natural and anthropogenic. Land degradation and livelihood are negatively interlinked with each other. The livelihood of the majority of the population in the study area is dependent on subsistence agriculture both farming and animal husbandry with low diversification. The survey result showed that more than half (69%) of the sample households have farm size of less than 2 ha, nearly one third (31%) have 2.0–2.5 ha, and insignificant number of farmers have more than 2.5 ha. More than 80% of the respondents pointed out that land degradation has impacts both on crop yield and livestock production. Most of the explanatory variables such as gender, age, education level, farmland size, and family size have statistical significant influence (at P < .01 and P < .05 levels) for income diversification of households, while marital status on the other hand is not statistically significant though it has positive relation with income diversification in this study. Conclusions: Our results suggest awareness should be created in the community about the livelihood diversification mechanisms which enabled them to engage in different income-generating activities and comprehensive watershed management should be implemented.

초록보기
Abstract

In lotic wetlands, runner reed (Phragmites japonicus) plays a role as a pioneer, which helps other plant species to settle by making dense roots trapping floating-sediments. In lentic wetlands, on the other hand, P. japonicus could play a role as an invader threatening biodiversity by forming tall and dense stands. To conserve an abandoned paddy terrace in mountainous areas, a habitat of an endangered dragonfly species (Nannophya pygmaea), from the monotypicoccupation by P. japonicus, we applied three kinds of treatment: (1) hand-clipping in 2009, (2) mechanical excavating in 2012, and (3) planting of alternative vegetational unit in 2012. We have monitored vegetation changes in the wetland in 2008~2012 and 2017. Vegetation cover of P. japonicus sharply decreased from 43% in 2011 to 16% in 2012 by the mechanical excavation. After 5 years from applying the treatment, Schoenoplectiella mucronata that was utilized in the planting became the predominant species instead of P. japonicus and the number of wetland plant species increased from 16 to 25 with the shift

초록보기
Abstract

Background: In ecosystem carbon cycle studies, distinguishing between CO2 emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil’s temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil’s temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

Terefe Tolessa(Ambo University) ; Feyera Senbeta(College of Development Studies, Addis Ababa University) pp.163-173 https://doi.org/10.1186/s41610-018-0081-4
초록보기
Abstract

Background: Deforestation and degradation are currently affecting the ecosystem services of forests. Among the ecosystem services affected by deforestation and degradation are the amount of soil organic carbon (SOC) and total nitrogen (TN) stored in forest soils which have greater impacts in global climate change. This study aimed at examining the amount of SOC and TN in the forest fragments which were separated from the continuous tracts of forests of Jibat and Chillimo through fragmentation processes over four decades. Methods: We have sampled soils from 15 forest fragments of Chillimo and Jibat in the central highlands of Ethiopia. The soil samples obtained in two separate soil depths (0–30 and 30–60 cm) were bulked, dried, and sieved for analysis. Results: Our results have shown that the two sites (Jibat and Chillimo forest fragments) differed in their SOC and TN contents. While the values for Jibat were found to be 29.89 Mg/ha of SOC and 2.84 Mg/ha for TN, it was 14. 06 Mg/ha of SOC and 1.40 Mg/ha for TN for Chillimo. When all forest fragment soil samples were bulked together, Jibat site had twice the value of SOC and TN than Chillimo. When disaggregated on the basis of each fragments, there existed differences in SOC (1.86 Mg/ha and 42.15 Mg/ha) and TN (0.24 Mg/ha and 4.23 Mg/ha) values. Among the forest fragments, fragment four (F4) had the highest Relative Soil Improvement Index (RSII) value of 3826.82% and fragment fifteen (F15) had the lowest RSII value (726.87%) which indicated that the former had a better quality of soil properties than the latter. Conclusion: SOC and TN differed across sampled fragments and sites. Variations in soil properties are the reflections of inherent soil parent material, aboveground vegetation, human interferences, and other physical factors. Such differences could be very important for identifying intervention measures for restoration and enhancing ecosystem services of those fragments.

초록보기
Abstract

Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence (Fo, Fm, and Fv/Fm). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. Fo and Fm values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while Fv/Fm showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and Fv/Fm were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.

초록보기
Abstract

Backgrounds: The main purpose of this research was to assess changes in vegetation structure, wetland index, and diversity index for a 15-year-old created wetland in Jincheon, South Korea. The created wetland consists of four sub-wetlands: a kidney-shaped wetland, a ditch, an ecological pond, and a square wetland. Vegetation and water depth data were collected at each site in 1999 and 2013, and Shannon diversity and wetland indices were calculated. Results: The total number of plant species increased from 18 in 1999 to 50 in 2013, and the ecological pond in 1999 and the ditch in 2013 presented the highest diversity indices (2.5 and 3.2, respectively). Plant species were less diverse in 1999 than in 2013, presumably because these initial wetlands were managed periodically for water purification and installation of test beds. The proportion of wetland plants, including obligate wetland and facultative wetland species, decreased from 83 to 56%, whereas upland plants, including obligate upland and facultative upland species, increased from 17 to 44%. After ceasing water supply, water depth in all four sub-wetlands declined in 2013. Thus, upland plants established more readily at these sites, resulting in higher diversity and lower wetland indices than in 1999. Conclusions: The major floristic differences between 1999 and 2013 were an increase in the number of upland plants and a decrease in wetland species. Although wetland indices were lower in 2013, the created wetland performed important ecosystem functions by providing habitats for wetland and upland plants, and the overall species diversity was high.

Rohit V. Bhagwat(Savitribai Phule Pune University) ; Dilip B. Boralkar(Savitribai Phule Pune University) ; Ram D. Chavhan(Savitribai Phule Pune University) pp.191-197 https://doi.org/10.1186/s41610-018-0085-0
초록보기
Abstract

Improper management and unsanitary approaches are implemented in disposal of leachate, which has resulted in groundwater pollution at village Uruli Devachi, Pune, India. Various physico-chemical treatment methods are commercially available for leachate treatment. However, the application of biological methods viz. phytoremediation to the municipal solid waste landfill leachate has been limited. We report the remediation ability of Typha aungstifolia and Acrorus calamus that is capable of reducing hazardous constituents from the landfill leachate. After 96 h of hydraulic retention time (HRT), it was observed that T. aungstifolia-treated sample showed high reduction potential in reducing biochemical oxygen demand, chemical oxygen demand, hardness, total dissolved solids, Na, Mg, Ca and Ni whereas A. calamus showed greater reduction capacity for alkalinity, Cl, Cu, Zn and Cr. Furthermore, it was also observed that T. aungstifolia withstood longer HRT than A. calamus. In situ application of T. aungstifolia and A. calamus for remediation of landfill leachate carries a tremendous potential that needs to be further explored.

초록보기
Abstract

Background: The effective use of habitats is essential for the successful adaptation of a species to the local environment. Although habitats exhibit a hierarchical structure, including macro-, meso-, and microhabitats, the relationships among habitats of differing hierarchy have not been well studied. In this study, we studied the quantitative measures of microhabitat use of Gekko japonicus from three field populations in Japan: one at Tsushima Island, one at Nishi Park, Fukuoka, and one at Ohori Park, Fukuoka. We investigated whether land cover type, a higher hierarchical habitat component, was associated with quantitative microhabitat use, a lower hierarchical component, in these populations. Results: The substrate temperature where we located geckos (SubT) and the distance from the ground to the gecko (Height) were significantly different among the three populations. In particular, SubT on Tsushima Island was lower than it was in the other two populations. Irradiance at gecko location and Height were significantly different among the land cover types. In particular, Height in evergreen needleleaf forest was significantly lower than that in deciduous broadleaf forest. Furthermore, significant interactions between population and land cover type were observed for the SubT and Height variables. Conclusions: The quantitative measures of microhabitat use of G. japonicus varied with population and land cover type, which exhibited significant interaction effects on microhabitat use variables. These results suggest that higher hierarchical habitat components can affect the quantitative measures of lower hierarchical microhabitat use in nocturnal geckos.

초록보기
Abstract

To assess the environmental factors determining the zonation between Phacelurus latifolius and Phragmites australis, vegetation survey and soil analysis were performed at a tidal marsh. The vegetation of the tidal marsh was classified into P. latifolius and Suaeda japonica dominated quadrats, P. latifolius and P. australis dominated quadrats, P. australis dominated quadrats, and P. australis and other land plants dominated quadrats. The density of P. latifolius (83.7 ± 5.5 shoots m−2) was higher than that of P. australis (79.3 ± 12.1 shoots m−2) in each dominated quadrat but height of two species were similar. Soil environmental characteristics of P. latifolius dominated quadrats appeared to be affected by tide based on higher soil electric conductivity (ECPL = 1530 ± 152 μS cm−1; ECPA + PL = 689 ± 578 μS cm−1; ECPA= 689± 578 μS cm−1) and lower pH (pHPL = 5.96 ± 0.16; pHPA + PL=6.28±0.31; pHPA = 6.38 ± 0.22). In redundancy analysis, environmental characteristics of P. latifolius dominated quadrats and P. australis dominated quadrats were clearly separated and those of P. latifolius and P. australis co-dominated quadrats were similar to P. australis dominated quadrats. From our investigation, P. latifolius showed relatively high competitiveness when compared to P. australis in lower tidal zone rather than upper tidal zone. Zonation of P. latifolius and P. australis seems to be a transitional zone between halophytes and land plant species.

초록보기
Abstract

Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were 550.1 mg CO2 m−2 h−1 at the ridge site and 289.4 mg CO2 m−2 h− 1 at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were 874 g m− 2 and 23.3% at the ridge site, and 396 g m−2 and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

초록보기
Abstract

Background: To understand the ecological characteristics of floating mat in which endangered species of Iris laevigata and Menyanthes trifoliata inhabit, we surveyed the vegetation and water environments of a floating mat wetland and examined the relations between ecological characteristics of the mat. Results: Although Phragmites australis and Zizania latifolia were found at all experimental quadrats (n = 61) as the major vegetational components of the floating mat wetland, they showed relatively poor growth performances in terms of shoot height (< 2 m) and biomass production (< 300 g/m2) compared with those in soil-based wetlands because of oligotrophic water condition. The competitiveness and distribution of P. australis and Z. latifolia seemed to be determined by water level difference by micro-topography rather than water chemistry. Conclusion: P. australis and endangered plant species mainly occurred in the area of relatively shallow water, whereas Z. latifolia and deep-water species such as Scirpus fluviatilis mostly inhabit in the area of deep water on the floating mat. Continuously maintained water level and oligotrophic water condition in the floating mat appeared to be important environments for endangered species such as I. laevigata and M. trifoliata.

Seyed Hamzeh Hosseini(University of Jiroft) ; Hossein Azarnivand(University of Tehran) ; Mahdi Ayyari(Tarbiat Modares University (TMU)) ; Mohammad Ali Zare Chahooki(University of Tehran) ; Reza Erfanzadeh(Tarbiat Modares University (TMU)) ; Sonia Piacente(University of Salerno) ; Reza Kheirandish(Shahid Bahonar University of Kerman) pp.227-239 https://doi.org/10.1186/s41610-018-0083-2
초록보기
Abstract

Background: Predicting the potential habitat of plants in arid regions, especially for medicinal ones, is very important. Although Pergularia tomentosa is a key species for medicinal purposes, it appears in very low density in the arid rangelands of Iran, needing an urgent ecological attention. In this study, we modeled and predicted the potential habitat of P. tomentosa using maximum entropy, and the effects of environmental factors (geology, geomorphology, altitude, and soil properties) on some characteristics of the species were determined. Results: The results showed that P. tomentosa was absent in igneous formation while it appeared in conglomerate formation. In addition, among geomorphological units, the best quantitative characteristics of P. tomentosa was belonged to the conglomerate formation-small hill area (plant aerial parts = 57.63 and root length = 30.68 cm) with the highest electrical conductivity, silt, and CaCO3 content. Conversely, the species was not found in the mountainous area with igneous formation. Moreover, plant density, length of roots, and aerial parts of the species were negatively correlated with soil sand, while positive correlation was observed with CaCO3, EC, potassium, and silt content. The maximum entropy was found to be a reliable method (ROC = 0.91) for predicting suitable habitats for P. tomentosa. Conclusion: These results suggest that in evaluating the plant’s habitat suitability in arid regions, contrary to the importance of the topography, some environmental variables such as geomorphology and geology can play the main role in rangeland plants’ habitat suitability.

초록보기
Abstract

Background: Several investigations carried out from large brackish lagoons in South Korea. However, no studies have yet examined phytoplankton in lagoons that changed to freshwater, such as Cheonjin Lake. The present study examined the algae from Cheonjin Lake. Methods: Samples were collected at monthly inetrvals from May 2017 to April 2018, from the surface layer using a plankton net (mesh size 20 μm), and sequeezing submerged macrophytes. Microscopic examinations were conducted at a magnification of 200 to 1000x using a Zeiss microscope (Axio Imager. A2), and photographs were taken with an AxioCam HRC camera. Silica-scaled samples of Chrysophyta for SEM were placed on coverglass, air dried, coated with gold, and then examined with a Hitachi SV8220 SEM. Results: A total of 376 taxa from six major algal groups (Chlorophyta, Chrysophyta, Euglenophyta, Cyanophyta, Dinophyta, and Cryptophyta) were identified. Among these algae, 28 taxa of desmids, 9 taxa of Euglenophyceae, 4 taxa of Chlorophyceae, 2 taxa of Chrysophyceae, and 1 taxon of Xanthophyceae are reported for the first time in Korea. A new species, Cosmarium hexagonum sp. nov was described. The phytoplankton communities were characterized by an abundance of Desmids (within Charophyceae) accounted for 148 taxa from 22 genera. Species richness were particularly high in the Autumn. Conclusion: In this study, a total 376 taxa of 148 desmids (Charophyceae), Chlorophyceae (103 taxa), Chrysophyceae (53 taxa), Euglenophyta (49 taxa), Dinophyta (8 taxa), and Cryptophyta (2 taxa) were identified from Cheonjin Lake. Twenty-eight taxa of desmids including a new species (Cosmarium hexagonum sp. nov.), 9 taxa of Euglenophyceae, 4 taxa of Chlorophyceae, 2 taxa of Chrysophyceae, and 1 taxon of Xanthophyceae were newly recorded in Korea.

초록보기
Abstract

Background: Revegetating landfills can be a challenging task as the reclaimed soils are typically dry and have low nutrient content. Therefore, selecting suitable plant species is important for initial revegetation. The issue with current practices (in Korea) is that alien plant species have been typically selected for revegetation projects. In this context, this study selects and tests a set of native plant species for landfill revegetation, accompanied by the assessment of the landfill soils. Results: The soil of the landfill (landfill location) was in a very poor condition with high bulk density and low organic matter and nutrient contents. Among 10 tested species, only Brassica campestris showed high coverage and a sufficient number of individuals in study quadrats sown with seeds. Results suggest that plant species with heavy seeds are the only ones that can adapt to the environment of a typical landfill due to the site’s aridity and low nutrient content. The reason is due to such species’ superior wind resistance and the capacity to provide sufficient energy for the initial growth of the plants for survival in such landfill environment. Conclusions: This study recommends selecting plant species (1) with arid-adapted features and (2) whose seed weight is sufficiently heavy for survival at landfills or areas with a similar condition for future revegetation.

초록보기
Abstract

Background: Temperature-driven variation in pollinator assemblage and activity are important information, especially at high altitudes, where rising temperature trends exceed global levels. Temporal patterns of pollinators in a flowering season can be used as a proxy to predict the changes of high-altitude plants’ mutualistic relationships. We observed a spring temperature change in one population of a high-altitude endemic species, Megaleranthis saniculifolia on Mt. Sobaeksan, and related it to pollinator assemblage and activity changes. Methods: This study was conducted at two sites, each facing different slopes (NE and NW), for two times in the spring of 2013 (early-flowering, April 27–28, vs. mid-flowering, May 7–8, 2013). We confirmed that the two sites were comparable in snowmelt regime, composition of flowering plants, and flower density, which could affect pollinator assemblage and activity. Pollinator assemblage and activity were investigated at three quadrats (1m2 with 5-m distance) for each site, covering a total of 840min observation for each site. We analyzed correlations between the temperature and visitation frequency. Results: Twelve pollinator species belonging to four orders were observed for M. saniculifolia at both sites during earlyand mid-flowering times. Diptera (five species) and hymenopteran species (four species) were the most abundant pollinators. Pollinator richness increased at both sites toward the mid-flowering time [early vs. mid = 7 (NE) and 3 (NW) vs. 9 (NE) and 5 (NW)]. Compared to the early-flowering time, visitation frequency showed a fourfold increase in the mid-flowering time. With the progression of spring, major pollinators changed from flies to bees. Upon using data pooled over both sites and flowering times, hourly visitation frequency was strongly positively correlated with hourly mean air temperature. Conclusions: The spring temperature change over a relatively brief flowering period of M. saniculifolia at high altitudes can alter pollinator assemblages through pollinator dominance and visitation frequency changes. Thus, this study emphasizes information on intra- and inter-annual variations in the mutualistic relationship between pollinators and M. saniculifolia to further assess the warming impacts on M. saniculifolia’s reproductive fitness.

초록보기
Abstract

Background: Studying the ecosystem carbon cycle requires analysis of interrelationships between soil respiration (Rs) and the environment to evaluate the balance. Various methods and instruments have been used to measure Rs. The closed chamber method, which is currently widely used to determine Rs, creates a closed space on the soil surface, measures CO2 concentration in the inner space, and calculates Rs from the increase. Accordingly, the method is divided into automatic or manual chamber methods (ACM and MCM, respectively). However, errors of these methods and differences in instruments are unclear. Therefore, we evaluated the characteristics and difference of Rs values calculated using both methods with actual data. Results: Both methods determined seasonal variation patterns of Rs, reflecting overall changes in soil temperature (Ts). ACM clearly showed detailed changes in Rs, but MCM did not, because such small changes are unknown as Rs values are collected monthly. Additionally, Rs measured using MCM was higher than that using ACM and differed depending on measured plots, but showed similar tendencies with all measurement times and plots. Contrastingly, MCM Rs values in August for plot 4 were very high compared with ACM Rs values because of soil disturbances that easily occur during MCM measurements. Comparing Rs values calculated using monthly means with those calculated using MCM, the ACM calculated values for monthly averages were higher or lower than those of similar measurement times using the MCM. The difference between the ACM and MCM was attributed to greater or lesser differences. These Rs values estimated the carbon released into the atmosphere during measurement periods to be approximately 57% higher with MCM than with ACM, at 5.1 and 7.9 C ton ha−1, respectively. Conclusion: ACM calculated average values based on various Rs values as high and low for measurement periods, but the MCM produced only specific values for measurement times as representative values. Therefore, MCM may exhibit large errors in selection differences during Rs measurements. Therefore, to reduce this error using MCM, the time and frequency of measurement should be set to obtain Rs under various environmental conditions. Contrastingly, the MCM measurement is obtained during CO2 evaluation in the soil owing to soil disturbance caused by measuring equipment, so close attention should be paid to measurements. This is because the measurement process is disturbed by high CO2 soil concentration, and even small soil disturbances could release high levels into the chamber, causing large Rs errors. Therefore, the MCM should be adequately mastered before using the device to measure Rs.

초록보기
Abstract

Plant functional traits have been shown to be useful to understand how and why ecosystems and their components vary across environmental heterogeneity or gradients. This study investigated how plant functional (leaf) traits vary according to an elevation-associated environmental gradient. Environmental gradients (mean annual temperature and precipitation) were quantified, and leaf traits (leaf area, specific leaf area, leaf nitrogen, leaf phosphorus, leaf carbon, and leaf C/N ratio) of the understory woody plant species Acer pseudosieboldianum were examined across an elevational gradient ranging from 600 to 1200 m in a Baegunsan Mountain in Gwangyang-si, Jeollanam-do, South Korea. The results showed that mean annual temperature and precipitation decreased and increased along with elevation, respectively. Leaf area of the plant species decreased slightly with increasing elevation, while specific leaf area did not differ significantly. Leaf nutrients (nitrogen, phosphorus, and carbon concentrations) were higher at high elevations, but leaf C/N ratio decreased with elevation.

; ; Piotr G. Jablonski ; pp.285-291 https://doi.org/10.1186/s41610-018-0091-2
초록보기
Abstract

The impact of climate change on animals has been globally documented. Especially, migration of birds has been extensively monitored as migratory birds are susceptible to any changes occurring both on breeding grounds and on wintering grounds. However, in contrast to spring migration, the patterns and the factors for autumn migration have not been well documented. In this study, we investigated the relationship with climate condition and the first arrival dates (FADs) of bean geese (Anser fabalis) and white-fronted geese (A. albifrons), the representative group of wintering birds in South Korea, using the data collected by Korean Meteorological Association during 1995–2016. Average temperature of September in wintering grounds has increased, and the FADs of the geese have advanced over the 22 years. Even when the influence of autumn temperature was statistically controlled for, the FADs of the geese have significantly advanced. This suggests that warming has hastened the completion of breeding, which speeded up the arrival of the geese at the wintering grounds. In order to assess the effect of climate condition on the arrival of the wintering migratory birds such as the geese in more detail, extensive data collection over many sampling sites and with long-term monitoring is needed.

Birhanu Goshme(Debre Markos University) ; Mesele Yihune(Addis Ababa University) pp.292-297 https://doi.org/10.1186/s41610-018-0098-8
초록보기
Abstract

Background: Gelada baboon is one of the endemic mammals of Ethiopia residing in different highlands. The population structure and habitat use of gelada baboon in Wof-Washa particularly Gosh Meda area was investigated from September 2016 to August 2017. Total counting method was used to collect data on the population status by dividing the study area in to four blocks, namely, Kundi, Arbgebeya, Goshber, and Goshmeda. Data were analyzed using SPSS software. The age-sex category and the numbers of geladas found within the different blocks were analyzed using one-way ANOVA, and paired t test was also used to analyze the pair wise comparison of the different age and sex categories during both dry and wet seasons. Results: A total of 435 and 471 gelada baboons were counted during the wet and dry seasons, respectively. The maximum group size consisted of 178 individuals whereas the minimum group size contained 53 individuals. Out of the total population adult females accounted for 54.7% in the wet and 54.56% in the dry seasons. There was a significant difference among the age-sex categories in both the wet (F2 432 =630, P<0.05) and dry (F2468 =696.6, P<0.05) seasons. The male to female ratio was 1:5.7 during wet season and 1:5.8 during dry season. So that the population will have a better chance to increase in the study area. Conclusion: Wof-Washa Forest could be a good site for eco-tourism activities due to the presence of endemic animals and its scenic beauty. However, the quality of the habitat is decreasing due to livestock grazing, agricultural expansion, and invasion of exotic plants species. Therefore, appropriate conservation measures should be implemented to conserve gelada baboon in particular and other wildlife resources in general.

Pradeep Adhikari(National Institute of Ecology) ; ; ; ; ; pp.298-307 https://doi.org/10.1186/s41610-018-0095-y
초록보기
Abstract

Background: Subalpine ecosystems at high altitudes and latitudes are particularly sensitive to climate change. In South Korea, the prediction of the species richness of subalpine plant species under future climate change is not well studied. Thus, this study aims to assess the potential impact of climate change on species richness of subalpine plant species (14 species) in the 17 mountain national parks (MNPs) of South Korea under climate change scenarios’ representative concentration pathways (RCP) 4.5 and RCP 8.5 using maximum entropy (MaxEnt) and Migclim for the years 2050 and 2070. Results: Altogether, 723 species occurrence points of 14 species and six selected variables were used in modeling. The models developed for all species showed excellent performance (AUC > 0.89 and TSS > 0.70). The results predicted a significant loss of species richness in all MNPs. Under RCP 4.5, the range of reduction was predicted to be 15.38–94.02% by 2050 and 21.42–96.64% by 2070. Similarly, under RCP 8.5, it will decline 15.38–97.9% by 2050 and 23.07–100% by 2070. The reduction was relatively high in the MNPs located in the central regions (Songnisan and Gyeryongsan), eastern region (Juwangsan), and southern regions (Mudeungsan, Wolchulsan, Hallasan, and Jirisan) compared to the northern and northeastern regions (Odaesan, Seoraksan, Chiaksan, and Taebaeksan). Conclusions: This result indicates that the MNPs at low altitudes and latitudes have a large effect on the climate change in subalpine plant species. This study suggested that subalpine species are highly threatened due to climate change and that immediate actions are required to conserve subalpine species and to minimize the effect of climate change.

초록보기
Abstract

Background: Genus Sasa, dwarf bamboos, are considered to be species that lower biodiversity in the temperate forests of East Asia. Although they have a long interval, they, the monocarpic species, have a unique characteristic of large-scale synchronized flowering. Therefore, once they have flowered and then declined, it may be an opportunity for suppressed surrounding species. A previous study reported that Sasa borealis showed specialized flowering nationwide with a peak in 2015. However, this was based on data from a social network service and field survey at Mt. Jeombong. Therefore, we investigated S. borealis in the forests of five national parks in order to determine whether this rare synchronized flowering occurred nationwide, as well as its spatial distribution. Results: We found a total of 436 patches under the closed canopy of Quercus mongolica-dominated deciduous forests in the surveyed transects from the five national parks. Of these patches, 75% occupied a whole slope area, resulting in an enormous area. The patch area tended to be larger in the southern parks. Half (219 patches) of the patches flowered massively. Among them, 76% bloomed in 2015, which was consistent with the results of the previous report. The flowering rate varied from park to park with that of Mt. Seorak being the highest. The culms of the flowering patches were significantly taller (F = 93.640, p < 0.000) and thicker (F = 61.172, p < 0.000). Following the event, the culms of the flowering patches declined, providing a good opportunity for the suppressed plant species. The concurrent massive flowering of the mature patches was believed to be triggered by some stress such as a spring drought. Conclusion: We confirmed that the rare synchronized flowering of S. borealis occurred with a peak in 2015 nationwide. In addition, we explored that S. borealis not only monopolized an enormous area, but also dominated the floors of the late-successional Q. mongolica-dominated deciduous forests. This presents a major problem for Korean forests. As it declined simultaneously after flowering, there are both possibilities of forest regeneration or resettlement of S. borealis by massively produced seeds.

Journal of Ecology and Environment