ISSN : 2287-8327
Background: To reveal establishment strategy of Sparganium erectum, we tried to find realized niche of adults through field survey and effects of water level on the establishment process through mesocosm experiments. Results: In the field survey, the height and coverage of community living in deeper water were greater than those of community living in shallow water. There was no statistically significant difference (p > 0.05) in the means of water and soil properties between the two communities. In mesocosm experiments, we found no correlation between water levels and germination rates, but S. erectum seedlings have characteristics of post germination seedling buoyancy when S. erectum seeds germinated in inundation conditions. Shoot height, total leaf length, and survival rates of sinking seedlings in shallow water levels at −5, 0, and 5 cm were higher than those in deeper water levels at 10 and 20 cm. Floating seedlings established in water levels of 3 and 6 cm only. The seedlings could live up to 6 weeks in floating state but died if they were unable to establish. Conclusions: The water level around adult S. erectum communities in the field were different from the water level at which S. erectum seedlings can survive in the mesocosm experiments. The findings provided not only understanding of S. erectum habitat characteristics but also evidence to connect historical links between the early seedlings stage and adult habitat conditions. We suggested the logical establishment strategy of S. erectum based on the data.
Background: This study was conducted to assess the physicochemical water quality and the altitudinal distribution of low-temperature and mountain epilithic diatom (LTMD) community in Buk and Hangae streams that are located in Seorak Mountain with the height of 1708 m in Korea. And the community characteristics of LTMD found in the Buk and Hangae streams were compared to that of LTMD from the Han River system. Results: The physicochemical water qualities of Buk and Hangae streams were determined to be very clean. As a result of analyzing the community composition, 135 taxa of epilithic diatoms were determined, and 22 taxa appeared including Hannaea arcus var. subarcus which are known to have low-temperature and mountain ecological characteristics in the literatures. The relative frequencies of LTMD were 37.0~0.9% range from the upper to lower regions. Although Diatoma tenuis, Eunotia minor, and Gomphonema affine are known to be ubiquitous in streams and lakes, in this research, the three taxa were added into low-temperature and mountain epilithic diatom, since D. tenuis and E. minor appeared only in altitudes above 600 m, and G. affine had the highest relative frequency during spring and fall in altitudes above 700 m, when water temperature was around 10 °C. Conclusions: Among the 24 taxa of low-temperature and mountain epilithic diatom (LTMD) (including the 3 taxa added in this study), 14 taxa (Diatoma hyemalis, D. mesodon, D. tenuis, Hannaea arcus, H. arcus var. subarcus, Ulnaria inaequalis, Eunotia bilunaris, E. implicata, E. minor, E. muscicola, E. silvahercynia, E. septena, Delicata delicatula, and Gomphonema affine) represented the characteristics of LTMD very well; they grow best in water temperatures below 15 °C in Buk and Hangae streams and Han River system.
Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat (160 × 300 m) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.