바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Vol.34 No.2

pp.137-147
초록보기
Abstract

In 2009, United Nations Educational, Scientific and Cultural Organization (UNESCO) recognized the unique outstanding ecosystem biodiversity and distinct ecocultural values of the Shinan Dadohae Biosphere Reserve in the island region. The Dadohae area, which has been sustainably conserved for scores of years, boasts not only a unique ecosystem, but also has residents with a wide range of traditional ecological knowledge. In terms of understanding the soundness of the ecosystem network known as the landscape system, the recent expansion of environmental development has served to heighten the degree of consideration given not only to biodiversity, which has long been used as an indicator to assess ecosystem soundness, but also to assess cultural diversity. Man has used the surrounding landscape and living organisms as his life resources since the beginning. Moreover, whenever necessary, man has developed new species through cultivation. Biodiversity became a foundation that facilitated establishing cultural diversity such as food and housing. Such ecological knowledge has been conveyed not only to adjacent regions, but also at the international level. The recent rapid changes in the Dadohae area island ecosystem caused by the transformation of fishing grounds by such factors as climate change, excess human activities, and marine pollution, is an epoch event in environmental history that shows that the balance between man and nature has become skewed. Furthermore, this issue has moved beyond the biodiversity and landscape diversity level to become an issue that should be addressed at the cultural diversity level. To this end,the time has come to pay close attention to this issue.

; ; ; Kenlo Nishda Nasahara(University of Tsukuba) ; Takeshi Motohka(University of Tsukuba) ; pp.149-156
초록보기
Abstract

Phenological variables derived from remote sensing are useful in determining the seasonal cycles of ecosystems in a changing climate. Satellite remote sensing imagery is useful for the spatial continuous monitoring of vegetation phenology across broad regions; however, its applications are substantially constrained by atmospheric disturbances such as clouds, dusts, and aerosols. By way of contrast, a tower-based ground remote sensing approach at the canopy level can provide continuous information on canopy phenology at finer spatial and temporal scales, regardless of atmospheric conditions. In this study, a tower-based ground remote sensing system, called the “Phenological Eyes Network (PEN)”,which was installed at the Gwangneung Deciduous KoFlux (GDK) flux tower site in Korea was introduced, and daily phenological progressions at the canopy level were assessed using ratios of red, green, and blue (RGB) spectral reflectances obtained by the PEN system. The PEN system at the GDK site consists of an automatic-capturing digital fisheye camera and a hemi-spherical spectroradiometer, and monitors stand canopy phenology on an hourly basis. RGB data analyses conducted between late March and early December in 2009 revealed that the 2G_RB (i.e., 2G - R - B) index was lower than the G/R (i.e., G divided by R) index during the off-growing season, owing to the effects of surface reflectance,including soil and snow effects. The results of comparisons between the daily PEN-obtained RGB ratios and daily moderate-resolution imaging spectroradiometer (MODIS)-driven vegetation indices demonstrate that ground remote sensing data, including the PEN data, can help to improve cloud-contaminated satellite remote sensing imagery.

; ; ; Manuel L. Castillo(University of the Philippines at Los Baños) ; pp.157-165
초록보기
Abstract

This study was conducted to determine the characteristics of gaps and natural regeneration of trees on Mt. Makiling,the Philippines. Canopy gaps in or around two 1-ha permanent plots and on 3-km line transects were investigated. Most of the gaps studied were formed or affected by Typhoon Milenyo, which hit the study site in September 2006. The most frequent mode of gap maker death was snap-off, whereas uprooting was relatively less important. The most frequent gap maker was balobo (Diplodiscus paniculatus) followed by magabuyo (Celtis luzonica) and katmon (Dillenia philippinensis). In contrast, the most frequent gap filler was magabuyo (C. luzonica). At the sapling layer, the most important species was magabuyo (C. luzonica), but there was a high proportion of lianas and palms. Most of the gaps had leaf area index (LAI) values between 3 and 5. A clear trend of a decrease in gap size and an increase in LAI was observed for 2 years from 2007 to 2009. New seedlings emerged very abundantly during the same time period. The rapid changes in the gaps were partially due to the excellent capability of tropical trees to resprout after the crown or stem was damaged by the typhoon. This study on gap dynamics may contribute to a better understanding of the natural regeneration process of trees in tropical rainforests.

; ; ; pp.167-174
초록보기
Abstract

Black-billed magpies (Pica pica) are a highly sedentary species due to their short and round wings, which are not adequate for long distance flights. We investigated geographic variation in the vocal signals of magpies residing in South Korea and Japan (subspecies sericea). Based on the magpie’s limited dispersal ability, we predicted that the variation in vocal signals of black-billed magpies could be explained by geographic barriers such as mountain ranges and straits. We analyzed four-syllable chatter calls of magpies from five localities in South Korea, which are separated by mountain ranges (Seoul, Daejeon, Daegu, Gwangju, and Busan), and two island localities separated from the mainland by straits (Jeju in Korea and Saga in Japan). We found significant differences in the characteristics of magpie chatter calls recorded in the seven localities, and the variation pattern was independent among the variables. Mainland-island differentiation and north-south differentiation were observed. In general, magpies on Saga were the most distinctive. North-south differentiation was observed among the Korean mainland localities. However, the pattern was not related to the presence of putative geographic barriers. We hypothesize that the patterns of geographic variation in the structure of magpie chatter calls residing in South Korea might have been shaped by a sudden expansion of magpies followed by low level of local isolation, which may have led to vocal differentiation. Along with elucidating the vocal environment of Korean magpie populations, more extensive sampling is needed to clarify the functional aspects of geographic variation in the vocal signals of Korean magpies.

; ; pp.175-191
초록보기
Abstract

Colonization patterns and community changes in benthic macroinvertebrates in the Cheonggye Stream, a functionally restored stream in downtown Seoul, Korea, were studied from November 2005 to November 2007. Benthic macroinvertebrates were quantitatively sampled 15 times from five sites in the stream section. Taxa richness (59 species in total)increased gradually over the first year, whereas the density revealed seasonal differences with significantly lower values in the winter season and after flood events. The benthic macroinvertebrate fauna may have drifted from the upstream reaches during floods and from the Han River, arrived aerially, or hitchhiked on artificially planted aquatic plants. Oligochaeta,Chironommidae, Psychodidae, and Hydropsychidae were identified as major community structure contributors in the stream. Swimmers and clingers colonized relatively earlier in the upper and middle reaches, whereas burrowers dominated particularly in the lower reaches. Collector-gatherers colonized at a relatively early period throughout the stream reaches, and collector-filterers, such as the net-spinning caddisfly (Cheumatopyche brevilineata), predominated in the upper and middle reaches after a 1-year time period. Cluster analyses and multi-response permutation procedures demonstrated that the Cheonggye Stream shares more similarities with the Jungnang Stream than with the Gapyeong Stream. Detrended correspondence analysis and nonmetric multidimensional scaling demonstrated that physical environmental factors (depth, current velocity, dissolved oxygen, and pH) as well as nutrients (total nitrogen and total phosphorous), water temperature, and conductivity could affect the distribution of benthic macroinvertebrates in the study streams.

Yusuke Oe(University of Tsukuba) ; Akinori Yamamoto(University of Tsukuba) ; Shigeru Mariko(University of Tsukuba) pp.193-202
초록보기
Abstract

We studied temperature sensitivity characteristics of soil respiration during periods of rising and falling temperatures within a common temperature range. We measured soil respiration continuously through two periods (a period of falling temperature, from August 7, 2003 to October 13, 2003; and a period of rising temperature from May 2, 2004 to July 2,2004) using an open-top chamber technique. A clear exponential relationship was observed between soil temperature and soil respiration rate during both periods. However, the effects of soil water content were not significant, because the humid monsoon climate prevented soil drought, which would otherwise have limited soil respiration. We analyzed temperature sensitivity using the Q_(10) value and R_(ref) (reference respiration at the average temperature for the observation period) and found that these values tended to be higher during the period of rising temperature than during the period of falling temperature. In the absence of an effect on soil water content, several other factors could explain this phenomenon. Here, we discuss the factors that control temperature sensitivity of soil respiration during periods of rising and falling temperature, such as root respiration, root growth, root exudates, and litter supply. We also discuss how the contribution of these factors may vary due to different growth states or due to the effects of the previous season, despite a similar temperature range.

Yongyut Trisurat(Kasetsart University) ; Prateep Duengkae(Kasetsart University) pp.203-214
초록보기
Abstract

The objectives of this research were to predict land-use/land-cover change at the Sakaerat Environmental Research Station (SERS) and to analyze its consequences on the distribution for Black-crested Bulbul (Pycnonotus melanicterus),which is a popular species for bird-watching activity. The Dyna-CLUE model was used to determine land-use allocation between 2008 and 2020 under two scenarios. Trend scenario was a continuation of recent land-use change (2002-2008),while the integrated land-use management scenario aimed to protect 45% of study area under intact forest, rehabilitated forest and reforestation for renewable energy. The maximum entropy model (Maxent), Geographic Information System (GIS) and FRAGSTATS package were used to predict bird occurrence and assess landscape fragmentation indices,respectively. The results revealed that parts of secondary growth, agriculture areas and dry dipterocarp forest close to road networks would be converted to other land use classes, especially eucalyptus plantation. Distance to dry evergreen forest, distance to secondary growth and distance to road were important factors for Black-crested Bulbul distribution because this species prefers to inhabit ecotones between dense forest and open woodland. The predicted for occurrence of Black-crested Bulbul in 2008 covers an area of 3,802 ha and relatively reduces to 3,342 ha in 2020 for trend scenario and to 3,627 ha for integrated-land use management scenario. However, intact habitats would be severely fragmented,which can be noticed by total habitat area, largest patch index and total core area indices, especially under the trend scenario. These consequences are likely to diminish the recreation and education values of the SERS to the public.

; ; ; ; pp.215-222
초록보기
Abstract

We evaluated the carbon (C) and nitrogen (N) status of litterfall in a natural red pine (Pinus densiflora) stand damaged by pine wilt disease in Jinju City, which was one of the areas severely affected by the disease in Korea. A significant correlation (P < 0.05) was found between tree density and basal area and the C and N status of litterfall components, but C and N status was not correlated with mean diameter at breast height in the pine wilt disease stands. Needle-litter C and N concentrations were linearly related (P < 0.05) to basal area in pine wilt disease stands. Needle-litter C concentration decreased with a decrease in damage intensity due to pine wilt disease, whereas litter N concentration increased with an increase of basal area in pine wilt disease stands. The linear regression equations developed for litterfall C and N inputs were significant (P < 0.05), with basal area accounting for 50-86% of the variation, except for cone and flower litter. The results indicated that the incidence of pine wilt disease could impact the quality and quantity of C and N in litterfall of pine stands suffering from pine wilt disease.

; ; ; pp.223-235
초록보기
Abstract

Juncus effusus is mostly found in freshwater wetlands and is widely used for landscaping and creating artificial wetlands due to its high ecological value. J. effusus tends to dominate during the early stage (3-10 years) of the second succession in abandoned paddy fields. This study focused on the environmental characteristics of J. effusus to create habitat for an endangered species, Nannopya pygmaea, which lives in wetlands dominated by J. effusus. Considering the distribution of J. effusus and N. pygmaea, 63 quadrats at eight wetlands were investigated between May and June 2006 during the critically dry period. Fifty-three species from 28 families co-occurred with J. effusus, and Persicaria thunbergii was the most abundant (63.5%). The optimal ranges of distribution (ORD) for the water variables were water depth, -2 to 10 cm;dissolved oxygen, 0.99-3.55 mg/kg, conductivity (CON), 23.40-115.40 μs/cm, total dissolved solid, 12.53-57.60 mg/L;pH, 5.00-6.87; K^+, 0.11-1.46 mg/L; Ca^(2+), 1.53-5.85 mg/L; Na^+, 3.16-7.47 mg/L; Mg^(2+), 0.11-1.96 mg/L; NO_3-N, < 0.001-0.072mg/L; NH_4-N, 0.005-0.097 mg/L; and PO_4-P, 0.006-0.047 mg/L. ORDs for the soil variables were water content, 1.05-2.96%; loss-on ignition method (LOI), 5.07-7.81%; CON, 23.70-59.70 μs/cm; pH, 4.40-5.16; extracted (e) K^+, 4.34-15.73cmol/kg; eCa^(2+), 31.56-191.56 cmol/kg; eNa^+, < 0.01-2.61 cmol/kg; eMg, 0.04-19.82 cmol/kg; eNO3-N, 0.514-1.175 mg/kg;eNH4-N, 0.033-0.974 mg/kg, ePO_4-P, 0.491-11.552 mg/kg; total nitrogen, 0.016-0.200%; and total carbon, 1.06-2.37%. The appearance of rush during early succession indicated relatively lower levels of these physicochemical parameters, and that ORDs should be maintained for the J. effusus community.

; pp.237-249
초록보기
Abstract

Land-use changes due to the socio-economic environment influence landscape patterns and processes, which affect habitats and biodiversity. This study considers the effects of such land-use changes, particularly on the traditional rural “Maeul” forested landscape, by analyzing landscape structure and vegetation changes. Three study areas were examined that have seen their populations decrease and age over the last few decades. Five types of plant life-forms (Raunkier life-forms) were distinguished to investigate ecosystem function. Principle component analysis was used to understand vegetation dynamics and community characteristics based on a vegetation similarity index. Ordination analysis transformed species-coverage data was introduced to clarify vegetation dynamics. Landscape indices, such as area metrics,edge metrics, and shape metrics, showed that spatial heterogeneity has increased over time in all areas. Pinus densiflora was the main land-use plant type in all study areas but decreased over time, whereas Quercus spp. increased. Over a decade, P. densiflora communities shifted to deciduous oak and plantation. These findings indicate that the impact of human activities on the Maeul landscape is twofold. While forestry activities caused heavy disturbances, the abandonment of traditional human activities has led to natural succession. Furthermore, it can be concluded that the type and intensity of these human impacts on landscape heterogeneity relate differently to vegetation succession. This reflects the cause and consequence of patch dynamics. We discuss an approach for sustainable landscape planning and management of the Maeul landscape based on traditional management.

Journal of Ecology and Environment