바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Vol.42 No.2

초록보기
Abstract

Background: Duodichogamy is the rarest form of dichogamy in angiosperms, which is characterized by flowering in the sequence of male→female→male. Disentangling factors promoting duodichogamy require the discovery of more duodichogamous species in angiosperms. However, extremely limited information on duodichogamous species makes it difficult to make general conclusions. Given the inflorescence morphology and flowering characteristics, the Meliaceae family is highly likely to contain duodichogamous species. Methods: We selected 48 individuals from 20 populations in Korea and investigated their flower morphology, arrangement of flowers by sexual condition within inflorescences, and flowering phases and duration of male and female flowers of Toona sinensis (Meliaceae) for 5 years (2011–2015) to determine if the species shows duodichogamous flowering. Results: Toona sinensis belonging to Meliaceae possessed functionally unisexual flowers with rudimentary parts of the opposite sex. The floral organs in male were larger than those in female, except for ovary length and width. In dichasium, male flowers were observed on primary or lateral branches, whereas female flowers were borne only on lateral branches. Overall, individuals from six different populations flowered in the male→female→male sequence, thereby male is blooming far longer than female flowers at the level of individual trees (male vs. female = 17–20 days vs. 2–4 days). Conclusions: This is the first study to report a duodichogamously flowering species, T. sinensis, within Meliaceae. Several flowering characteristics observed from T. sinensis may be important clues used to discover additional duodichogamous Meliaceae species. Short flowering period and relatively small number of female flowers, which is analogous to reduced ovule numbers observed in other duodichogamous species, may intensify male–male competition in T. sinensis. This study contributed to narrowing down potential candidates of duodichogamy based on their geographic distributions and flowering time.

초록보기
Abstract

Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was 124.5 ton C ha− 1 in 2011 and 132.63 ton C ha− 1 in 2012 for aboveground biomass. And it was 31.13 ton C ha− 1 in 2011 and 33.16 ton C ha− 1 in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and 165.79 ton C ha− 1 in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and 6. 39 ton C ha− 1 in the forest floor and it was 78.89 and 100.71 ton C ha− 1 in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was 238. 13 ton C ha− 1 in 2011 and 272.89 ton C ha− 1 in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was 14.22 ton C ha− 1 year− 1 and the amount of carbon emission of soil respiration was 16.77 ton C ha− 1 year− 1. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was 5 ton C ha− 1 year− 1. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about 23. 81 mil won ha− 1 in 2011 and 27.29 mil won ha− 1 in 2012, showing an annual increment of carbon storage value by 3. 48 mil won ha− 1. The carbon absorption value based on such NEP was estimated about 500,000 won ha− 1 year− 1

초록보기
Abstract

Background: Sasa borealis (Hack.) Makino, a clonal dwarf bamboo, is widespread in Korean forests. Although S. borealis is native to that country, its growth habit can cause considerable harm when occupying particular areas where it dominates and influences those forested communities. However, few reports have described the extent of its inhibitory effects on the vigor of co-existing plant species. Therefore, we investigated the distribution, abundance, and diversity of other plant species in the communities where this plant occurs in the east-central forests on the Korean Peninsula. Results: S. borealis was most commonly found at an elevational range of 800 to 1,200 m, on gentle, usually lower, and near valley northern slopes. Out of the 13 forest communities based on 447 forest stands that we surveyed, S. borealis was detected in eight communities, mostly where Quercus mongolica dominates. In particular, it was more common in late-successional mixed stands of Q. mongolica, other deciduous species, and the coniferous Abies holophylla. Because of their ability to expand rapidly in the forest, this plant covered more than 50% of the surface in most of our research plots. Species diversity declined significantly (F = 78.7, p = 0.000) as the abundance of S. borealis increased in the herb stratum. The same trend was noted for the total number of species (F = 18.1, p = 0.000) and species evenness (F = 91.5, p = 0.000). Conclusions: These findings clearly demonstrate that S. borealis is a weed pest and severely hinders species diversity. Authorities should be implementing various measures for ecological control to take advantage of declining chance after the recent synchronized massive flowering of S. borealis.

초록보기
Abstract

Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was 12.0 °C. The minimum value for monthly Ts was − 0.4 °C in February 2015 and 2.0 °C in January 2016. The maximum monthly Ts was 23.6 °C in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was 784.3 mg CO2 m−2 h−1 in July when 26.8 mm of daily precipitation was measured. The maximum was 913.6 mg CO2 m−2 h−1 in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

; ; ; ; ; ; ; Piotr G. Jablonski pp.85-89 https://doi.org/10.1186/s41610-018-0070-7
초록보기
Abstract

Observations and video documentation of interactions between animals living in dens, cavities, and other enclosed spaces are difficult, but they play an important role in field biology, ecology, and conservation. For example, bird parents visiting nests and feeding their nestlings may provide crucial information for testing of ecological hypotheses and may easily attract attention of participants of citizen-science ecological and conservation projects. Because of the nest concealment of cavity-nesting birds, their behaviors in the nest can only be studied by using video surveillance. Professional wildlife surveillance systems are extremely expensive. Here, we describe an inexpensive video setup that can be constructed with relatively little effort and is more affordable than any previously described system. We anticipate that the relatively low cost of about 250 USD for a battery-operated system is an important feature for citizen-science type of projects and for applications in heavily populated areas where the potential for theft and vandalism may be high. Based on our experiences, we provide methodological advice on practical aspects of using this system in the field for ecological research on birds. We highlight the low cost, easiness of construction, and potential availability to a large number of observers taking part in wildlife monitoring projects, and we offer technical help to participants of such research projects.

Journal of Ecology and Environment