바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.41 No.10

초록보기
Abstract

Background: In this study, the growth and reproductive response of seedlings, grown in plastic pots with sand, to moisture and nutrients were analyzed in order to study the environmental conditions required to create an alternative habitat for Epilobium hirsutum L., an endangered plant. Results: Vegetative and reproductive growths of Epilobium hirsutum L. are accelerated with increase in moisture and organic matter content in the soil. Among vegetative organs, the number of runners related to asexual reproduction was the highest when the moisture content was over 25% and nutrient content between 7 and 14% in the soil. But the number of flowers related to flowering responses, among reproductive organs, was the highest when the moisture content was maintained at 75% and when nutrient content was 21% in the soil. The number of seeds, related to sexual reproduction, was the highest when the moisture content was over 25% and nutrient content between 14 and 21%. Conclusions: The study results show that a place with high moisture and nutrient content in the soil is advantageous to asexual and sexual reproduction of Epilobium hirsutum L. Therefore, we must serve periodically nutrient and seeds to sustain population in in situ conservation. Furthermore, it is advisable to create in riverside where abundant nutrient content have, making alternative habitat of Epilobium hirsutum L. Also, we must find species that have high contribution degree index through vegetation survey.

초록보기
Abstract

Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in Mg2+ content and total nitrogen, K+, Ca2+ contents, canopy openness, light intensity, air humidity, Na+ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Journal of Ecology and Environment