바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.44 No.3

; ; ; ; (Karlsruher Institut fur Technologie) pp.115-125 https://doi.org/10.1186/s41610-020-00156-9
초록보기
Abstract

Background: The phenomenon of tree dieback in forest ecosystems around the world, which is known to be associated with high temperatures that occur simultaneously with drought, has received much attention. Korea is experiencing a rapid rise in temperature relative to other regions. Particularly in the growth of evergreen conifers, temperature increases in winter and spring can have great influence. In recent years, there have been reports of group dieback of Pinus densiflora trees in Korea, and many studies are being conducted to identify the causes. However, research on techniques to diagnose and monitor drought stress in forest ecosystems on local and regional scales has been lacking. Results: In this study, we developed and evaluated an index to identify drought and high-temperature vulnerability in Pinus densiflora forests. We found the Drought Stress Index (DSI) that we developed to be effective in generally assessing the drought-reactive physiology of trees. During 2001–2016, in Korea, we refined the index and produced DSI data from a 1 × 1-km unit grid spanning the entire country. We found that the DSI data correlated with the event data of Pinus densiflora mass dieback compiled in this study. The average DSI value at times of occurrence of Pinus densiflora group dieback was 0.6, which was notably higher than during times of nonoccurrence. Conclusions: Our combination of the Standard Precipitation Index and growing degree days evolved and short- and long-term effects into a new index by which we found meaningful results using dieback event data. Topographical and biological factors and climate data should be considered to improve the DSI. This study serves as the first step in developing an even more robust index to monitor the vulnerability of forest ecosystems in Korea.

; Lee Jongsung(Kangwon National University) ; ; Noh Jaesang(Kangwon National University) pp.126-142 https://doi.org/10.1186/s41610-020-00157-8
초록보기
Abstract

Background: Most of the Pinus densiflora forests, occupying the largest area, have been restored in South Korea since the 1970s. As young pioneer forests, the succession process is under way. Since the forests are distributed nationwide and are vulnerable to disturbances, the process may differ depending on the geography and/or site conditions. Therefore, we reviewed the direction, the seral communities, and the late-successional species of progressive and disturbance-driven succession nationwide in the cool-temperate zone through meta-analysis and empirical observations. Main text: As a result of a meta-analysis of the direct succession and vertical structure, we found that the P.densiflora forest is in a directionally progressive succession, changing to the broadleaved forest after forming a mixed forest with its overwhelming successor, Quercus species (particularly Q. mongolica and Q. serrata). In dry stands in a relative sense, the Quercus species was favored occupying over 80% of the abundance of the succeeding species. Therefore, in dry stands, it is presumed that Quercus-dominated stage would last for a long time due to the current dominance and long life span, and eventually, it settles as Quercus-broadleaved forest with a site change. Contrary to this, it is presumed that in mesic stands where Quercus species do not occur or have low abundance, the late-successional broadleaved species settle early to form a co-dominant forest with multiple species. Due to geographical limits, the species composition of the two late-successional forests is different. Disturbances such as insect pests and fire retrogressed vulnerable P. densiflora forest for a while. However, it was mostly restored to the Quercus forest and is expected to be incorporated in the pathway of the dry stand. Conclusions: We revealed the succession process of P. densiflora forests according to geography and moisture and found that stand moisture had a decisive effect on the species and abundance of the successor. Although the P. densiflora forest is undergoing structural changes, the forest is still young; so within a few decades, physiognomy is not likely to change. Therefore, the decrease in the forest area may be due to other causes such as disturbances and forest conversion rather than due to succession.

초록보기
Abstract

Background: Korean wild boars (Sus scrofa coreanus Heude), because of their adaptability, are a widespread large mammal; however, they sometimes cause problems by invading farms and eating the crops, creating insufficiencies of some foods in South Korea. To understand the diet composition of Korean wild boars according to sex and body size, we collected their feces from Mt. Jeombongsan, Seoraksan National Park, South Korea. The sizes of fecal samples were measured, and genomic DNA was extracted from the samples. We amplified specific loci targeting plants (rbcL and trnL) and animals (COI) to detect the food sources of this omnivore and amplified the ZF and SRY regions to determine the sex. Results: In the wild boar feces, Rosaceae and Bryophyte were the most frequently detected plant food sources at the family level and Diptera and Haplotaxida were the most frequently detected animal food sources at the order level. As a result of sex determination, the sex ratio of wild boars collected in the Mt. Jeombongsan area was approximately 1:1. Our result suggested that there is no significant difference between the diet composition of male and female boars. Based on the average cross-sectional area of the feces, the top 25% were classified into the large body size group and the bottom 25% were classified into the small body size group. The large body size group mainly preferred Actinidiaceae, and the small body size group most frequently consumed Fagaceae. The diet of the large body size group was more diverse than the small body size group. Conclusions: Our results showed that the wild boars preferred Rosaceae, especially Sanguisorba and Filipendula, as plant food sources, and Diptera and Coleoptera of Insecta as animal food sources. Based on the results, the dietary preferences of wild boar appear to be distinguished by not their sex but their body size. Our study could help to elucidate the feeding ecology and population structure of wild boar, as well as address conservation and management issues.

(PGA Eco and Bio Diversity Institute) ; ; ; pp.155-161 https://doi.org/10.1186/s41610-020-00162-x
초록보기
Abstract

Glossy Ibis (Plegadis falcinellus), which has never been recorded in South Korea, appeared on Jeju Island in 2018 and re-emerged in the inland area of Seocheon-gun (South Chungcheong Province) and in Goyang-si (Gyeonggi Province) in the following year. This study aims to report the progress in observing P. falcinellus in the inland areas of South Korea in 2019 and to predict its origin region and future propensity for habitats in the country through literature review. On 5 May 2019, an individual of P. falcinellus with breeding feathers was observed in a farmland in Wolsan-ri, Seocheon-gun. Twelve days later, another one was identified in a farmland in Janghang-dong, Goyang-si, about 173 km north of Wolsan-ri. The observed birds fed and rested in the area and stayed for only a day. The individual birds spotted in South Korea in 2019 are conjectured to have come from either Southeast Asia or Australia, among areas located in East Asian-Australasian Flyway (EAAF). This is because P. falcinellus, a species with excellent dispersal capacity, forms a population in new areas during extreme environmental changes in their current habitats, especially droughts. For 2 years, P. falcinellus was observed to be migrating in spring; however, in the future, they may exhibit the same propensity for breeding and habitats as that of birds migrating in autumn. As it is a conspicuous species, effective detection of their arrival requires a survey system that classifies the country by habitat type and involves periodic and multiple observations by experts and citizens.

초록보기
Abstract

Background : Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results : From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon–Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions : The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

Girmay Teklay(Adigrat University) ; Dati Deribe(Adigrat University) pp.178-184 https://doi.org/10.1186/s41610-020-00163-w
초록보기
Abstract

Background : Geladas (Theropithecus gelada), endemic to Ethiopia, are distributed closely related to the escarpments and gorge systems of the country, and large populations are found in the Simien Mountain National Park. This study was conducted in Eastern Tigray, Northern Ethiopia, from February 2018 to August 2019 in order to determine population size and composition of geladas. Total count method was used to estimate the population structure of geladas. Observations of the group of geladas based on body size and morphological characteristics were used to classify age and sex categories of the population. SPSS Version 20 was used to analyze the data. Chi-square test was used to compare sex ratio of geladas and population size among the counting sites between wet and dry seasons. Results : A total of 112 and 99 individual of geladas were counted during wet and dry seasons, respectively. Of the average gelada population recorded in this study, 11.4% were adult males, 30.3% were adult females, 12.8% were sub-adult males, 25.6% were sub-adult females, and 19.9% were unidentified juveniles. However, there was no statistically significant difference among the various age and sex groups of geladas counted during wet and dry season (χ2 = 2.6, DF = 4, P > 0.05). Variations of group size along seasons were observed in this study. Sex ratio of adult male to adult female was 1:2.6 and 1:2.7 during the dry and wet seasons, respectively. Conclusion : Very small gelada population size was recorded in the current study. An average of 105.5 geladas was recorded during the study period. As this is the first report of gelada population in escarpments of Eastern Tigray, population trend of the geladas cannot decide based on the current study.

초록보기
Abstract

Background: The flathead grey mullet Mugil cephalus has the widest distribution among mugilid species. Recent studies based on mitochondrial DNA sequences showed that the species comprises at least 14 different groups, three of which occur in the northwest Pacific. We analyzed the otolith microchemistry of M. cephalus at several locations in Korea to improve understanding of migration pattern and population origin. Results: We collected 123 sagittal otoliths from seven locations and determined their concentrations of eight elements (7Li, 24Mg, 55Mn, 57Fe, 60Ni, 63Cu, 88Sr, and 138Ba) using laser ablation inductively coupled plasma mass spectrometry. Mean otolith elemental ratios differed significantly among the locations. The Sr:Ca, Fe:Ca, and Ba:Ca ratios were significantly higher than others, and useful chemical signatures for investigating the habitat use of M.cephalus populations. We identified five diverse and complicated migration patterns using the otolith data that we collected: estuarine resident (type I), freshwater migrant (type II), estuarine migrant (type III), seawater resident (type IV), and seawater migrant (type V). A canonical discriminant analysis plot revealed separation of two groups (type II in the Yellow Sea vs. other types in remaining locations). Two locations on Jeju Island, despite their close proximity, had fish with quite different migration patterns, corroborating previous molecular studies that distinguished two groups of fishes. Conclusion: We successfully showed that the migration patterns of the Korean mullet varied by // Only fish from the western sector of Jeju had a unique migration pattern, which is likely confined population in this area. Among the eight otolith elements measured, the Sr:Ca ratio was found to be the best indicator of migration pattern and population origin.

Dhamala Man Kumar(Tribhuvan University) ; Aryal Prakash Chandra(GoldenGate International College) ; Suwal Madan Krishna(University of Bergen) ; Bhatta Sijar(GoldenGate International College) ; Bhuju Dinesh Raj(Nepal Academy of Science and Technology) pp.196-206 https://doi.org/10.1186/s41610-020-00166-7
초록보기
Abstract

Background: The Himalayan forests are of great importance to sustain the nature and community resource demands. These forests are facing pressures both from anthropogenic activities and ongoing global climatic changes. Poor natural regeneration has been considered a major problem in mountainous forests. To understand the population structure and regeneration status of Larix (Larix griffithiana and Larix himalaica), we conducted systematic vegetation surveys in three high-altitude valleys namely Ghunsa (Kanchenjunga Conservation Area, KCA), Langtang (Langtang National Park, LNP), and Tsum (Manaslu Conservation Area, MCA) in Nepal Himalaya. The average values of diameter at breast height (DBH), height, and sapling height were compared for three sites and two species using Kruskal-Wallis test. Population structure was assessed in terms of proportion of seedlings, saplings, and trees. Regeneration was analyzed using graphical representation of frequencies of seedlings, saplings, and trees in histograms. Results: The results showed that the population structure of Larix in terms of the proportion of seedling, sapling, and tree varied greatly in the three study areas. KCA had the highest record of seedling, sapling, and tree compared to other two sites. Seedlings were the least among three forms and many plots were without seedlings. We found no seedling in MCA study plots. The plot level average DBH variation among sites was significant (Kruskal-Wallis χ2 = 7.813, df = 2, p = 0.02) as was between species (Kruskal-Wallis χ2 = 5.9829, df = 1, p = 0.014). Similarly, the variation in average tree height was significant (Kruskal-Wallis χ2 = 134.23, df = 2, p < 0.001) among sites as well as between species (Kruskal-Wallis χ2 = 128.01, df = 1, p < 0.001). All the sites showed reverse J-shaped curve but more pronounced for KCA and MCA. In comparing the two species, Larix griffithiana has clear reverse Jshaped diameter distribution but not Larix himalaica. Conclusion: The varied responses of Larix manifested through regeneration status from spatially distinct areas show that regeneration limitations might be more pronounced in the future. In all the three studied valleys, regeneration of Larix is found to be problematic and specifically for Larix griffithiana in MCA and Larix himalaica in LNP. To address the issues of disturbances, especially serious in LNP, management interventions are recommended to sustain the unique Himalayan endemic conifer.

Journal of Ecology and Environment