바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.41 No.1

초록보기
Abstract

Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

초록보기
Abstract

Background: Species in the heterokont genus Synura are colonial and have silica scales whose ultrastructural characteristics are used for classification. We examined the ultrastructure of silica scales and molecular data (nuclear SSU rDNA and LSU rDNA, and plastid rbcL sequences) to better understand the taxonomy and phylogeny within the section Petersenianae of genus Synura. In addition, we report the first finding of newly recorded Synura species from Korea. Results: We identified all species by examination of scale ultrastructure using scanning and transmission electron microscopy (SEM and TEM). Three newly recorded species from Korea, Synura americana, Synura conopea, and Synura truttae were described based on morphological characters, such as cell size, scale shape, scale size, keel shape, number of struts, distance between struts, degree of interconnections between struts, size of base plate pores, keel pores, base plate hole, and posterior rim. The scales of the newly recorded species, which belong to the section Petersenianae, have a well-developed keel and a characteristic number of struts on the base plate. We performed molecular phylogenetic analyses based on sequence data from three genes in 32 strains (including three outgroup species). The results provided strong statistical support that the section Petersenianae was monophyletic, and that all taxa within this section had well-developed keels and a defined number of struts on the base plate. Conclusions: The phylogenetic tree based on sequence data of three genes was congruent with the data on scale ultrastructure. The resulting phylogenetic tree strongly supported the existence of the section Petersenianae. In addition, we propose newly recorded Synura species from Korea based on phylogenetic analyses and morphological characters: S. americana, S. conopea, and S. truttae.

초록보기
Abstract

Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to CO2 stocks. Results: The amount of plant organic carbon was 13.60 ton C ha−1year−1 in 2012 and 14.29 ton C ha−1year−1 in 2013. And average organic carbon introduced to forest floor through litter production was 0.71 ton C ha−1year−1. Organic carbon distributed in forest floor litter layer was 0.73 ton C ha−1year−1 on average and accumulated organic carbon in soil was 51.13 ton C ha−1year−1 on average. In 2012, Amount of released CO2 from soil to atmosphere was 10.93 ton CO2 ha−1year−1. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was −1.74 ton C ha−1yr−1 releasing more carbon than it absorbed.

초록보기
Abstract

This study was conducted to clarify the size of the home range and movement distance of juvenile black-faced spoonbills from post-fledging until fall migration using a Global Positioning System (GPS)-wideband code division multiple access (WCDMA)-based telemetry system along the west coast of South Korea. The home range of juvenile black-faced spoonbills (n = 3) was 45.2 km² in size and the core area consisted of 8.4 km² within the Baeksu mudflat, Yeonggwang, South Jeolla Province, South Korea. Mean weekly movement distances were not significantly different (Kruskal–Wallis test, Z = 3.47, P = 0.18) among individuals, ranging from 0.1 to 23.9 km during the study period. The home range and movement of juvenile black-faced spoonbills were related to intertidal areas, especially to their use as feeding areas.

Journal of Ecology and Environment