ISSN : 2287-8327
Background: The purpose of this study is to describe the morphological characteristics of the Aphanizomenon spp. and related species from the natural samples collected in the Nakdong River of South Korea. Results: Morphological characteristics in the four species classified into the genera Aphanizomenon Morren ex Bornet et Flahault 1888 and Cuspidothrix Rajaniemi et al. 2005 were observed by light microscopy. The following four taxa were identified: Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault, Aphanizomenon klebahnii Elenkin ex Pechar, Aphanizomenon skujae Komárková-Legnerová et Cronberg, and Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. Aph. flos-aquae and Aph. klebahnii always formed in fascicles; the others only occurred in solitary. Aph. flos-aquae was similar to Aph. klebahnii, whereas these species differed from each other by the size and shape of fascicles, which was macroscopic in Aph. flos-aquae and microscopic in the Aph. klebahnii. One of their characteristics was that trichomes are easily disintegrating during microscopic examination. C. issatschenkoi could be clearly distinguished from other species by hair-shaped terminal cell. Its terminal cell was almost hyaline and markedly pointed. Young populations of the species without heterocytes run a risk of a misidentification. Aph. skujae was characterized by akinete. Morphological variability of akinetes from natural samples collected in the Nakdong River was rather smaller than those reported by previous study. Conclusions: C. issatschenkoi are described for the first time in the Nakdong River. In addition, Aph. klebahnii and Aph. skujae are new to South Korea.
Background: Mussels are stubborn organisms attached to solid substrata by means of byssus threads. The abundance of marine mussel Mytilus edulis in marine facilities like power stations was reason to select among fouling animals. Methods: Mortality patterns as well as physiological behavior (oxygen consumption, foot activity, and byssus thread production) of two different size groups (14- and 25-mm shell length) of M. edulis were studied at different hydrogen peroxide concentrations (1–4 mg l−1). Results: Studied mussels showed progressive reduction in physiological activities as the hydrogen peroxide concentration increased. Mussel mortality was tested in 30 days exposure, and 14 mm mussels reached the highest percentage of 90% while 25 mm mussels reached 81%. Produced data was echoed by Chick-Watson model extracted equation. Conclusions: This study points that, while it could affect the mussel mortality moderately in its low concentrations, hydrogen peroxide has a strong influence on mussels’ physiological activities related to colonization. Therefore, hydrogen peroxide can be an alternative for preventing mussel colonization on facilities of marine environment.