바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

The impact of cardinal temperature variation on the germination of Haloxylon aphyllum L. seeds

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2010, v.33 no.3, pp.187-193
Mansour Taghvaei (Shiraz University)
Masoumaeh Ghaedi (Shiraz University)

Abstract

Seed germination is a biological process that is affected by a variety of genetic and environmental factors. The cardinal temperature and thermal time are required for germination. The principal objective of this study was to identify and characterize variations in the base, optimum, and maximum germination temperatures of Haloxylon aphyllum L. from two seed sources, in order to establish models for use in predicting seeding dates. Mature H. aphyllum seeds were germinated at temperatures between 5 and 35℃. The germination behavior of H. aphyllum seeds to different temperature regimens in light was evaluated over a temperature range of 5-35℃ at intervals of 5℃. The rate of germination increased between base and optimum thermal conditions, and decreased between optimum and maximum thermal conditions;the germination rate varied in a linear fashion at both sub-optimal and supra-optimal temperatures. The linear regression fit the range of germination rates at 5℃ to 25℃ and 25℃ to 30℃, and thus the base temperature, optimum temperature,and maximum temperature for the germination of H. aphyllum were measured to be 0.6℃, 25.69℃, 37.90℃, and 1.76℃, 21.56℃, 37.90℃ for Qom and the Fars dune desert respectively.

keywords
cardinal temperature, germination rate, Haloxylon aphyllum, seed germination

Reference

1.

Al-Ahmadi MJ, Kafi M. 2007. Cardinal temperatures for germination of Kochia scoparia (L.). J Arid Environ 68: 308-314.

2.

Ali ZI, Mahalakshmi V, Singh M, Ortiz-Ferrara G, Peacock JM. 2008. Variation in cardinal temperatures for germination among wheat (Triticum aestivum) genotypes. Ann Appl Biol 125: 367-375.

3.

Alvarado V, Bradford KJ. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ 25: 1061-1069.

4.

Arnold CY. 1959. The determination and significance of the base temperature in a linear heat unit system. J Am Soc Hortic Sci 74: 430-445.

5.

Baskin CC, Baskin JM. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, CA.

6.

Bewley JD, Black M. 1994. Seeds: Physiology of Development and Germination. Plenum Press, London.

7.

Covell S, Eliss RH, Roberts EH, Summerified RJ. 1986. The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. J Exp Bot 37: 705-715.

8.

Ellis RH, Barrett S. 1994. Alternating temperatures and rate of seed germination in lentil. Ann Bot 74: 519-524.

9.

Ellis RH, Roberts EH. 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9: 373-409.

10.

Flores J, Briones O. 2001. Plant life-from and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. J Arid Environ 47: 485-497.

11.

Ghaedi M, Taghvaei M, FallahShamsi SR, Niazi A. 2009. The influence of light, temperature and salinity on seed germination of Haloxylon aphyllum L. Sci Res J Iranian Range Manage Soc 2: 411-420.

12.

Gilbertson PK, Johnson BL. 2008. Cardinal temperatures for borage seed germination. 2008 Joint Annual Meeting, 2008 Oct 5-9, Houston, Texas.

13.

Gimmenez-Benavides L, Escudero A, Perez-Garcia F. 2005. Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability. Ecol Res 20: 433-444.

14.

Gutterman Y. 1993. Seed Germination in Desert Plants: Adaptations of Desert Organisms. Springer-Verlag, Berlin.

15.

Hadley P, Roberts EH, Summerfield RJ, Minchin FR. 1983. A quantitative model of reproductive development in cowpea [Vigna unguiculata (L) Walp.] in relation to photoperiod and temperature, and implications for screening germplasm. Ann Bot 51: 531-543.

16.

Hardegree SP. 2006. Predicting germination response to temperature: I. Cardinal-temperature models and subpopulation-specific regression. Ann Bot 97: 1115-1125.

17.

Heydecker W. 1977. Stress and seed germination: an agronomic view. In: The Physiology and Biochemistry of Seed Dormancy and Germination (Khan AA, ed). Elsevier/North Holland and Biomedical Press, Amsterdam, pp 237-282.

18.

Huang ZY, Zhang XS, Zeng GH, Gutterman Y. 2003. Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J Arid Environ 55: 453-464.

19.

Kamkar B, Koocheki A, Nassiri Mahallati M, Rezvani Moghaddam P. 2006. Cardinal temperatures for germination in three Millet Specieses (Panicum miliaceum, Pennisetum glaucum and Setaria italica). Asian J Plant Sci 5: 316-319.

20.

Kocabas Z, Craigon J, Azam-Ali SN. 1999. The germination response of Bambara groundnut (Vigna sublerrannean (L)Verdo) to temperature. Seed Sci Technol 27: 303-313.

21.

Lawrence OC. 2001. Principles of Seed Science and Technology. 4th ed. Kluwer Academic Publishers, Norwell, MA.

22.

Mansoory M. 1992. A Directory of Wetland in Middle Est. Ramsar Sites Information Service, Wageningen.

23.

National Academy of Sciences. 1980. Firewood Crops: Shrub and Tree Species for Energy Production. National Academy of Sciences, Washington, DC.

24.

Orlovsky N, Birnbaum EH. 2002. The role of Haloxylon species for combating desertification in Central Asia. Plant Biosystems 136: 233-240.

25.

Phartyal SS, Thapliyal RC, Nayal JS, Joshi G. 2002. Processing of seed to improve seed lot quality of rare and endangered tree species of Himalayan maple (Acer caesium Wall. Ex. Brandis) and Elm (Ulmus wallichiana Planchon). Seed Sci Technol 30: 371-382.

26.

Phartyal SS, Thapliyal RC, Nayal JS, Rawat MMS, Joshi G. 2003. The Influences of temperatures on seed germination rate in Himalayan elm (Ulmus wallichiana). Seed Sci Technol 31: 83-93.

27.

Rizzardi MA, Luiz AR, Roman ES, Vargas L. 2009. Effect of cardinal temperature and water potential on Morning Glory (Ipomoea triloba) seed germination. Planta Daninha 27: 13-21.

28.

Roberts EH. 1988. Temperature and seed germination. In: Plants and Temperature: Symposia of the Society of Experimental Biology (Long SP, Woodward FI, eds). Company of Biologist Ltd., Cambridge, pp 109-132.

29.

Shafii B, Price WJ. 2001. Estimation of cardinal temperatures in germination data analysis. J Agric Biol Environ Stat 6: 356-366.

30.

Tobe K, Li X, Omasa K. 2000. Seed germination and radicle growth of a halophyte, Kalidium capsicum (chenopodiaceae). Ann Bot 85: 391-396.

31.

Villalobos FJ, Mateos L, Orgaz F, Fereres E. 2002. Fitotecnia. Bases y Technología de la Producción Agrícola. Mundi-Prensa, Madrid.

32.

Wu ZY. 1995. Vegetation of China. Science Press, Beijing. (in Chinese)

33.

Young JA, Evans RA, Stevens R, Everett RL. 1981. Germination of Kochia prostrata seed. Agron J 73: 957-961.

34.

Zehtab-Salmasi S. 2006. Study of cardinal temperatures for Pumpkin (Cucurbita pepo) seed germination. J Agron 5: 95-97

Journal of Ecology and Environment