바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Short-term effects of elevated CO2 on periphyton community in an artificially constructed channel

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2016, v.40 no.1, pp.12-19
https://doi.org/10.1186/s41610-016-0009-9




Abstract

Background: Direct impact of inorganic carbon (i.e., carbon dioxide (CO2)) on the periphyton community is important to understand how and to what extent atmospheric conditions can affect the structure and dynamics of these communities in lotic systems. We investigated the influence of elevated CO2 concentration on the periphyton community in the artificially constructed channels during the winter period. The channels made of acrylic paneling were continuously supplied with surface water discharged from a small reservoir, which was supported with ground water, at a flow rate of 5 L/min, and water temperature ranging 4–5℃. The effects of elevated CO2 concentrations (790 ppm) were evaluated in comparison with the control (395 ppm CO2) by analyzing pH, water carbon content and nutrients in water, periphyton composition and biomass, chlorophyll-a, ash-free dry-matter at 2-day intervals for 10 days. Results: After the addition of CO2, significant decreases of pH, NH3-N, and PO4-P (p < 0.05) and increases of chlorophyll-a, ash-free dry-matter, and the cell density of periphyton (p < 0.01) were observed, whereas the species composition of periphyton and water carbon content did not change. Conclusions: These results suggest that elevated CO2 in flowing water system with low temperature could facilitate the growth of periphyton resulting in biomass increase, which could further influence water quality and the consumers throughout the food web.

keywords

Reference

1.

APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association.

2.

Battisti, D. S., & Naylor, R. L. (2008). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.

3.

Biggs, B. J. F., Stevenson, R. J., & Lowe, R. L. (1998). A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie, 143, 21–56.

4.

Biswas, H., CROS, A., Yadav, K., Ramana, V. V., Prasad, V. R., Acharyya, T., & Babu, P. V. R.(2011). The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology, 407, 284–293.

5.

Chung, J. (1993). Illustration of the freshwater algae of Korea. Seoul: Academy Publishing Company.

6.

Falkowski, P.G. and J.A. Raven. (2007). Aquatic photosynthesis. NJ: Princeton University Press.

7.

Finlay, J. C. (2003). Controls of stream water dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry, 62, 231–252.

8.

Finlay, J. C. (2004). Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography, 49, 850–861.

9.

Finlay, J. C., Power, M. E., & Cabana, G. (1999). Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnology and Oceanography, 44, 1198–1203.

10.

Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). Journal of Phycology, 43, 485–496.

11.

Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology, 56, 99–131.

12.

Goldman, J. C. (1999). Inorganic carbon availability and the growth of large marine diatoms. Marine Ecology Progress Series, 180, 81–91.

13.

Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S.M., Rowley, S. J., Tedesco, D., & Buia, M. C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(96), 99.

14.

Hargrave, C. W., Gray, K. P., & Rosado, S. K. (2009). Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems: a test using experimental stream mesocosms. Global Change Biology, 15, 2779–2790.

15.

Hein, M., & Sand-Jensen, K. (1997). CO2 increases oceanic primary production. Nature, 388, 526–527.

16.

Hillebrand, H., & Sommer, U. (2000). Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany, 67, 221–236.

17.

Hopkinson, B. M., Dupont, C. L., Allen, A. E., & Morel, F. M. M. (2011). Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America, 108, 3830–3837.

18.

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X.,Maskell, K., & Johnson, C. A. (2001). Climate change 2001: the scientific basis (Intergovernmental Panel on Climate Change). Cambridge: Cambridge University Press.

19.

IPCC. (2007). Fourth assessment report: climate change 2007 (AR4). http://www.ipcc.ch/report/ar4/

20.

Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M., & HallSpencer,J. M. (2011). Responses of marine benthic microalgae to elevatedCO2. Marine Biology, 160, 1813–1824.

21.

Krammer, K. and H. Lange-Bertalot. (1991a). Süsswasserflora von Mitteleuropa, Band 2/3: Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany. 576pp.

22.

Krammer, K. and H. Lange-Bertalot. (1991b). Süsswasserflora von Mitteleuropa, Band 2/4: Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany. 437pp.

23.

Krammer, K. and H. Lange-Bertalot. (2007a). Süsswasserflora von Mitteleuropa, Band 2/1: Bacillariophyceae 1. Teil: Naviculaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany.

24.

Krammer, K. and H. Lange-Bertalot. (2007b). Süsswasserflora von Mitteleuropa, Band 2/2: Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae (Ettl, H., J. Gerloff, H. Heynig and D. Mollenhauer, eds.). Elsevier Book Co., Germany.

25.

Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Griger, J., Klepetar, J., Prasil, O., &Berman-Frank, I. (2007). Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology, 13, 531–538.

26.

Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103, 15729–15735.

27.

Min, Y. H., Kang, S. W., Lee, H. S., & Chung, N. H. (2011). Relationship between concentration of phosphorus, turbidity, and pH in water and soil under aerobic and anaerobic conditions. Journal of Applied Biological Chemistry, 54, 225–229.

28.

Patrick, R., & Reimer, C. W. (1966). The diatoms of the United States, exclusive of Alaska and Hawaii (Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae, Vol. 1). Philadelphia: Academy of natural sciences of Philadelphia.

29.

Ross, R. M., Krise, W. F., Redell, L. A., & Bennett, R. M. (2001). Effects of dissolved carbon dioxide on the physiology and behavior of fish in artificial streams. Environmental Toxicology, 16, 84–95.

30.

Rost, B., Riebesell, U., & Burkhardt, S. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography, 48, 55–67.

31.

Sayre, R. (2010). Microalgae: the potential for carbon capture. BioScience, 60(9),722–727. doi:10.1525/bio.2010.60.9.9.

32.

Schippers, P., Lurling, M., & Scheffer, M. (2004). Increase of atmospheric CO2promotes phytoplankton productivity. Ecology Letters, 7, 446–451.

33.

Suffrian, K., Simonelli, P., Nejstgaard, J. C., Putzeys, S., Carotenuto, Y., & Antia, A. N.(2008). Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences, 5, 1145–1156.

34.

Tortell, P. D., Rau, G. H., & Morel, F. M. M. (2000). Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography, 45, 1485–1500.

35.

Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C.,Dunbar, R. B., Sedwick, P., & DiTullio, G. R. (2008). CO2 sensitivity of southern oceanphytoplankton. Geophysical Research Letters, 35, L04605. doi:10.1029/2007GL032583.

36.

Trimborn, S., Wolf-Gladrow, D., Ritcher, K. L., & Rost, B. (2009). The effect of pCO2on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology, 376, 26–36.

37.

Tuchman, N. C., Wetzel, R. G., Rier, S. T., Wahtera, K. A., & Teeri, J. A. (2002). Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology, 8, 163–170.

38.

Villeneuve, A., Montuelle, B., & Bouchez, A. (2010). Influence of slight differences in environmental conditions (light, hydrodynamics) on the structure and function of periphyton. Aquatic Sciences, 72, 33–44.

Journal of Ecology and Environment