바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2017, v.41 no.1, pp.1-8
https://doi.org/10.1186/s41610-016-0020-1



  • Downloaded
  • Viewed

Abstract

Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

keywords
Apis mellifera, Forest ecology, Airborne LiDAR, Pollination service, Vegetation structure

Reference

1.

Angelini, A., Corona, P., Chianucci, F., & Portoghesi, L. (2015). Structural attributes of stand overstory and light under the canopy.

2.

Auslander, M., Nevo, E., & Inbar, M. (2003). The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. Journal of Arid Environments, 55, 405–416.

3.

Bae, S. Y. (2015). Modelling avian taxonomic, functional, and phylogenetic diversity in relation to 3-D forest structure. Seoul: PhD dissertation, Seoul National Univ.

4.

Bennie, J., Hill, M. O., Baxter, R., & Huntley, B. (2006). Influence of slope and aspect on long‐term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355–368.

5.

Daily, G. C. (2000). Management objectives for the protection of ecosystem services. Environmental Science & Policy, 3, 333–339.

6.

Ebeling, A., Klein, A. M., Schumacher, J., Weisser, W. W., & Tscharntke, T. (2008). How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos, 117, 1808–1815.

7.

Enoki, T., Kusumoto, B., Igarashi, S., & Tsuji, K. (2014). Stand structure and plant species occurrence in forest edge habitat along different aged roads on Okinawa Island, southwestern Japan. Journal of Forest Research, 19, 97–104.

8.

Fourrier, A., Bouchard, M., & Pothier, D. (2015). Effects of canopy composition and disturbance type on understorey plant assembly in boreal forests. Journal of Vegetation Science, 26, 1225–1237.

9.

Gazol, A., & Ibáñez, R. (2009). Different response to environmental factors and spatial variables of two attributes (cover and diversity) of the understorey layers. Forest Ecology and Management, 258, 1267–1274.

10.

Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845–858.

11.

Girling, R. D., Lusebrink, I., Farthing, E., Newman, T. A., & Poppy, G. M. (2013). Diesel exhaust rapidly degrades floral odours used by honeybees. Scientific Reports, 3, 2779.

12.

Gong, X., Brueck, H., Giese, K., Zhang, L., Sattelmacher, B., & Lin, S. (2008). Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments, 72, 483–493.

13.

Guirado, M., Pino, J., & Roda, F. (2007). Comparing the role of site disturbance and landscape properties on understory species richness in fragmented periurban Mediterranean forests. Landscape Ecology, 22, 117–129.

14.

Hadley, A. S., & Betts, M. G. (2012). The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biological Reviews, 87, 526–544.

15.

Hegland, S. J., & Boeke, L. (2006). Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecological Entomology, 31, 532–538.

16.

Huebner, C. D., Randolph, J., & Parker, G. (1995). Environmental factors affecting understory diversity in second-growth deciduous forests. American Midland Naturalist, 155–165.

17.

Inari, N., Hiura, T., Toda, M. J., & Kudo, G. (2012). Pollination linkage between canopy flowering, bumble bee abundance and seed production of understorey plants in a cool temperate forest. Journal of Ecology, 100, 1534–1543.

18.

Jackson, M. M., Turner, M. G., & Pearson, S. M. (2014). Logging legacies affect insect pollinator communities in Southern Appalachian Forests. Southeastern Naturalist, 13, 317–336.

19.

Jang, J. W. (2009). A study on honey plants in Korea. Daegu: PhD Dissertation, Daegu Univ.

20.

Kern, C. C., Montgomery, R. A., Reich, P. B., & Strong, T. F. (2014). Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community. Forest Science, 60, 335–344.

21.

Kevan, P., & Baker, H. (1983). Insects as flower visitors and pollinators. Annual Review of Entomology, 28, 407–453.

22.

Korea Beekeeping Association. (2007). Current status of honey plant afforestation. Korea Beekeeping Bulletin, 331, 52–23.

23.

Latif, Z. A., & Blackburn, G. A. (2010). The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. International Journal of Biometeorology, 54, 119–129.

24.

Lefrancois, M.-L., Beaudet, M., & Messier, C. (2008). Crown openness as influenced by tree and site characteristics for yellow birch, sugar maple, and eastern hemlock. Canadian Journal of Forest Research, 38, 488–497.

25.

McCann, K. S. (2000). The diversity–stability debate. Nature, 405, 228–233.

26.

Messier, C., Parent, S., & Bergeron, Y. (1998). Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science, 9, 511–520.

27.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345–353.

28.

Proctor, E., Nol, E., Burke, D., & Crins, W. J. (2012). Responses of insect pollinators and understory plants to silviculture in northern hardwood forests. Biodiversity and Conservation, 21, 1703–1740.

29.

R Core Team. (2015). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

30.

Rech, J. A., Reeves, R. W., & Hendricks, D. M. (2001). The influence of slope aspect on soil weathering processes in the Springerville volcanic field, Arizona. Catena, 43, 49–62.

31.

Ricketts, T. H., Regetz, J., Steffan‐Dewenter, I., Cunningham, S. A., Kremen, C.,Bogdanski, A., Gemmill‐Herren, B., Greenleaf, S. S., Klein, A. M., & Mayfield, M. M. (2008). Landscape effects on crop pollination services: are there general patterns? Ecology Letters, 11, 499–515.

32.

Roubik, D. W. (1993). Tropical pollinators in the canopy and understory: field data and theory for stratum “preferences”. Journal of Insect Behavior, 6, 659–673.

33.

Sokal, R. R., Oden, N. L., & Thomson, B. A. (1998). Local spatial autocorrelation in a biological model. Geographical Analysis, 30, 331–354.

34.

Spellerberg, I. (1998). Ecological effects of roads and traffic: a literature review. Global Ecology and Biogeography, 7, 317–333.

35.

Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30.

36.

Valladares, F., & Niinemets, U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237–257.

37.

Valverde, T., & Silvertown, J. (1997). Canopy closure rate and forest structure. Ecology, 78, 1555–1562.

38.

Vaudo, A. D., Tooker, J. F., Grozinger, C. M., & Patch, H. M. (2013). Bee nutrition and floral resource restoration. Current Opinion in Insect Science, 10, 133–141.

39.

Walters, B. B., & Stiles, E. W. (1996). Effect of canopy gaps and flower patch size on pollinator visitation of Impatiens capensis. Bulletin of the Torrey Botanical Club, 184–188.

40.

Watkins, R. Z., Chen, J., Pickens, J., & Brosofske, K. D. (2003). Effects of forest roads on understory plants in a managed hardwood landscape. Conservation Biology, 17, 411–419.

41.

Wong, M., Cheung, L., & Wong, W. (1984). Effects of roadside dust on seed germination and root growth of Brassica chinensis and B. parachinensis. Science of the Total Environment, 33, 87–102.

42.

Wratten, S. D., Gillespie, M., Decourtye, A., Mader, E., & Desneux, N. (2012). Pollinator habitat enhancement: benefits to other ecosystem services. Agriculture Ecosystems & Environment, 159, 112–122.

Journal of Ecology and Environment