바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • KOREAN
  • P-ISSN2287-8327
  • E-ISSN2288-1220
  • SCOPUS, KCI

Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2018, v.42 no.3, pp.111-119





Abstract

Background: Juniperus chinensis L. populations are distributed locally on several areas including coastal cliffs which are difficult to access in the central eastern Korea. Wild populations inhabit relatively barren environments such as rocky areas and cliffs, which are very sensitive to even minor environmental disturbances including artificial interventions and natural disturbances, and thus demonstrate great fluctuations in the population size and density. This study aims to analyze the genetic diversity, differentiation, and genetic structure of each population in order to provide useful data required to establish a substantial conservation strategy of J. chinensis. Results: The genetic diversity of J. chinensis at the population level (P =78.7%, h = 0.282, S.I. = 0.420) was somewhat higher compared with those measured in the same genus, Juniperus. The genetic differentiation degree among nine populations established naturally in central eastern Korea was 11.50% and that among sub-populations within the same area was 5.52%. On the other hand, genetic variation of individuals within the populations was 82.93%. But frequency of the main allele was different among loci. In particular, fixation of allele frequency and occurrence of rare allele in the highly isolated population suggest a likelihood that genetic drift would occur in populations of this plant. As the result of analysis on the genetic structure of nine populations, nearby populations and isolated populations tended to form separate clusters from each other as the hypothetical number of clusters (K) increase. Conclusions: This result implies that if the population size of J. chinensis is reduced due to environmental change and artificial and/or natural disturbances in the future, it could affect negatively on the genetic diversity of the plant species. In order to maintain and conserve genetic diversity of J. chinensis, ecological network, which can help genetic exchange among the local populations, should be prepared, and conservation strategies in situ as well as ex situ are also required with continuous monitoring.

keywords
Juniperus chinensis, Inter-simple-sequence repeat (ISSR), Genetic diversity, Structure, Conservation

Reference

1.

Adams, R. P. (2014). Junipers of the world: the genus Juniperus. Bloomington: Trafford Publishing.

2.

Bell, G., & Gonzalez, A. (2009). Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 12(9), 942-948.

3.

Bohonak, A. J. (2002). IBD (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity, 93(2), 153-154.

4.

Cho K, Jeong J, Kim W, Kim Y, Hong Y. Genetic variation of populations of Fraxinus mandshurica Rupr. In Korea (Oleaceae) based on I - SSR Marker Analysis. Proceedings of Korean Forest Society. 2002. 114-115.

5.

Choi, H. S., Hong, K. N., Chung, J. M., & Kim, W. W. (2004). Spatial genetic structure and genetic diversity of a rare endemic Juniperus chinensis var. sargentii in Mt. Halla, Korea. The Korean Journal of Ecology., 27(5), 257-261.

6.

Couvet, D., Ronce, O., & Gliddon, C. (1998). The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. The American Naturalist., 152(1), 59-70.

7.

Dzialuk, A., Mazur, M., Boratynska, K., Montserrat, J. M., Romo, A., & Boratynski, A. (2011). Population genetic structure of Juniperus phoenicea (Cupressaceae) in the western Mediterranean Basin: gradient of diversity on a broad geographical scale. Annals of Forest Science., 68(8), 1341-1350.

8.

Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008). Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Molecular ecology., 17(5), 1170-1188.

9.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology., 14(8), 2611-2620.

10.

Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 1, 117693430500100003.

11.

Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587.

12.

Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular ecology notes., 7(4), 574-578.

13.

Fan, X. X., Shen, L., Zhang, X., Chen, X. Y., & Fu, C. X. (2004). Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochemical genetics, 42(7-8), 269-278.

14.

Farjon, A. (2008). The natural history of conifers Portland: Timber Press.

15.

Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology., 24(11), 2610-2618.

16.

Gonzalez A, Mouquet N, & Loreau M. (2009). Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C, Eds. Biodiversity, ecosystem functioning, and human wellbeing. New York: Oxford University Press, 134-46.

17.

Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. Plant population genetics, breeding, and genetic. Resources, 43-63.

18.

Hamrick, J. L., & Godt, M. J. W. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences., 351(1345), 1291-1298.

19.

Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (vol. 116). Sunderland: Sinauer associates.

20.

Hou, Y., & Lou, A. (2011). Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae). PLoS One, 6(9), e24497.

21.

Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters, 11(6), 609-623.

22.

Hutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898-1914.

23.

IUCN. The IUCN red list of threatened species, Conifer Specialist Group Ver. 2.3. 1998.

24.

Jacquemyn, H., Honnay, O., Galbusera, P., & Roldan-Ruiz, I. (2004). Genetic structure of the forest herb Primula elatior in a changing landscape. Molecular Ecology., 13(1), 211-219.

25.

Jeong, J. H., Kim, E. H., Guo, W., Yoo, K. O., Jo, D. G., & Kim, Z. S. (2010). Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers. Plant systematics and evolution., 289(1-2), 67-76.

26.

Jo, H. J. (2012). Antitumor efficacy evaluation for cedrol dosage form studies. Department of life science and biotechology, Graduate school, Dong-Eui University. Master's thesis in Korea.

27.

Kwon, H. Y., & Kim, Z. S. (2002). I-SSR variation within and among Korean populations in Taxus cuspidata. Journal Korean forestry society., 91(5), 654-660.

28.

Lee, J. H. (2005). Ecological approach for the effective conservation and management of forest vegetation in Ulleung island, Korea. Graduate school, Kyungpook National University. Doctoral thesis in Korea.

29.

Lee, J. W., Hong, K. N., & Kang, J. T. (2014). Genetic diversity and genetic structure of Phellodendron amurense populations in South Korea. Journal of Korean Forest Society., 103(1), 51-58.

30.

Legendre, P., & Legendre, L. (1998). Numerical ecology: second English edition. Developments in environmental modelling, 20.

31.

Lewis, D. (1942). The evolution of sex in flowering plants. Biological Reviews, 17(1), 46-67.

32.

Lienert, J., & Fischer, M. (2003). Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. Journal of Ecology, 91(4), 587-599.

33.

Llorens, T. M., Ayre, D. J., & Whelan, R. J. (2004). Evidence for ancient genetic subdivision among recently fragmented populations of the endangered shrub Grevillea caleyi (Proteaceae). Heredity, 92(6), 519-526.

34.

Mandel, R., & Alberts, D. (2005). Propagation protocol for Oneseed and Utah junipers (Juniperus monosperma and Juniperus osteosperma). Native Plants Journal., 6(3), 263-266.

35.

Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in ecology & evolution., 18(4), 189-197.

36.

McCauley, D. E., Olson, M. S., Emery, S. N., & Taylor, D. R. (2000). Population structure influences sex ratio evolution in a gynodioecious plant. The American Naturalist., 155(6), 814-819.

37.

McDermott, J. M., & McDonald, B. A. (1993). Gene flow in plant pathosystems. Annual Review of Phytopathology, 31(1), 353-373.

38.

Meloni, M., Perini, D., Filigheddu, R., & Binelli, G. (2006). Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Annals of Botany., 97(2), 299-304.

39.

Murphy, W. D. (1990). Assessment and modification of cognitive distortions in sex offenders. In Handbook of sexual assault. Boston: Springer, 331-342.

40.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences., 70(12), 3321-3323.

41.

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.

42.

Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular ecology., 13(5), 1143-1155.

43.

Olivieri, I., Michalakis, Y., & Gouyon, P. H. (1995). Metapopulation genetics and the evolution of dispersal. The American Naturalist., 146(2), 202-228.

44.

Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution, 66(1), 1-17.

45.

Ronce, O., Perret, F., & Olivieri, I. (2000). Evolutionarily stable dispersal rates do not always increase with local extinction rates. The American Naturalist., 155(4), 485-496.

46.

Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

47.

Shin, J. K., Chung, J. M., Kim, J. S., Yoon, C. W., & Shin, C. H. (2015). The distribution and dynamics between sexes, conservation of natural populations of a rare woody plant, Juniperus chinensis L. Korean Journal of Plant Resources., 28(4), 400-410.

48.

Terrab, A., Schonswetter, P., Talavera, S., Vela, E., & Stuessy, T. F. (2008). Rangewide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution., 48(1), 94-102.

49.

Thomson, J. D., & Barrett, S. C. (1981). Temporal variation of gender in Aralia hispida Vent.(Araliaceae). Evolution, 35(6), 1094-1107.

50.

Ulleung County The Office Ulleung County history book. 2007.

51.

Vucetich, J. A., & Waite, T. A. (2003). Spatial patterns of demography and genetic processes across the species' range: null hypotheses for landscape conservation genetics. Conservation genetics., 4(5), 639-645.

52.

Wang, J., Ye, Q., Kang, M., & Huang, H. (2008). Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sapindaceae) as revealed by categorical paternity analysis. Conservation Genetics., 9(3), 559-567.

53.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16(2), 97-159.

54.

Yeh, F. C., Yang, R. C., & Boyle, T. (1999). POPGENE version1. 32, Microsoft window-base software for population genetic analysis: a quick user's guide. University of Alberta. Center for International Forestry Research, Alberta.

55.

Young, A., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution., 11(10), 413-418.

Journal of Ecology and Environment