바로가기메뉴

본문 바로가기 주메뉴 바로가기

(사)한국터널지하공간학회

Vol.17 No.6

; pp.575-586
초록보기
Abstract

In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Ruben Duhme(Herrenknecht Tunneling Equipment Co. China) ; Thorsten Tatzki(Herrenknecht Asia Headquarters Pte. Ltd) pp.587-596
초록보기
Abstract

Recent years have shown great advances in the feasibility of long subsea tunnels. Projects such as the Channel Tunnel, the Stoerebelt Tunnel or the Bosporus Crossing have pushed the boundaries of TBM tunneling technology and fueled the work on feasibility studies for even more challenging projects such as crossing the Qiongzhou or Gibraltar Straits. There are numerous geotechnical challenges such as wide variations of ground conditions, high operation pressures or long tunnel distances and finally geological uncertainties which must be solved in order to attempt such projects. Several operational challenges such as large muck quantities interventions under difficult conditions and long transport distances also have to be tackled. TBM manufacturer and construction industry have developed a number of approaches to these challenges which point into the right technical direction and have been proven successfully in recent experiences. Their further development will allow attempting several megaprojects which are currently under discussion.

; pp.597-604
초록보기
Abstract

When a tunnel is constructed by drilling and blasting operation, the excavated perimeter becomes uneven due to overbreak at the drill holes so that the thickness of shotcrete tends to be irregular. In this case, the conventional stress analyses for tunnel lining of a uniform thickness cannot be readily applicable. In this study, the profile of tunnel perimeter assumed to be sinusoidal in order to simulate the uneven tunnel perimeter and to control the thickness of shotcrete by using the amplitude and wavelength. By adopting the sinusoidal function to a theoretical solution of stress analysis for uniform lining, the range of axial stress of irregular shotcrete can be estimated. The applicability of the approximate solution has been verified by performing a series of numerical analyses for various conditions. It is shown that the axial stress of shorcrete is highly dependent upon the irregularity of shotcrete, together with the ground property and initial stress conditions. It is also shown the shear stress is dependent upon the wavelength, and the stress condition becomes unfavorable where the thickness of shotcrete is relatively small. The approach developed in this study shows that the stress state where the thickness is relatively small is unfavourable, and it is necessary to take complementary measures when installing shotcrete after blasting.

; ; ; pp.605-614
초록보기
Abstract

A room-and-pillar underground structure is characterized by its grid-type array of room and pillar. As a result, its construction and economical efficiency can be governed by excavation sequence. In this study, the construction period by the drill and blast method which can be treated as a main sequence for excavation was examined by considering the regulation for blasting and construction standard of estimation in Korea. To evaluate the construction period for the room-and-pillar underground structure constructed in 4 kinds of square-type area (30×30~57×57 m), the concurrent excavation pattern which was suggested in the previous researches was used. From the suggested condition, the total construction period by drill-and-blast method can be estimated with the consideration of the construction area, number of jumbo drill and faces in operation.

Mohammed Ruhul Kabir(Department of Railway System Engineering) ; ; pp.615-621
초록보기
Abstract

In this paper diamond wire cutting method has been proposed to cut the rock in the tunnel face. Diamond wire saw method could cut the rock from tunnel face with very minor vibration and noise. In this study rock cutting process has been simulated with FEM method by using LS-DYNA explicit non-linear finite element code. Normal load act as an prime factor when cutting the rock surface. For observing the effect of normal load on bead, several experiments has been conducted by varying normal loads on the bead. From each experiment, cutting rate has been calculated to compare the cutting rate with different load conditions. By increasing the normal load on bead, cutting rate increases drastically.

; ; ; pp.623-635
초록보기
Abstract

Double-deck tunnels beneath the groundwater table have relatively large volume and commonly constructed as watertight tunnels. In this case, it requires to secure stability of the tunnels for buoyant force. Generally the contact force between lining and ground is sufficient to resist the buoyant force. However in the long-term the contact force could be reduced because of structural deterioration. In this study the effect of long-term buoyant force acting on the double-deck tunnel is investigated. The results has shown that the buoyant force has increased invert deformation and stress. It is indicated that the contact resilience between lining and ground needs to be kept during tunnel operation.

; ; pp.637-652
초록보기
Abstract

In the present work, a number of three-dimensional (3D) parametric numerical analyses have been carried out to study the influence of tunnelling on the behaviour of adjacent piles considering the transverse distance of the pile tip from the tunnel. Single piles and 5×5 piles inside a group with a spacing of 2.5d were considered, where d is the pile diameter. In the numerical modelling, several key issues, such as the tunnelling-induced pile settlements, the interface shear stresses, the relative shear displacements, the axial pile forces, the apparent factors of safety and zone of influence have been rigorously analysed. It has been found that when the piles are inside the influence zone, the pile head settlements are increased up to about 111% compared to those computed from the Greenfield condition. Larger pile settlements and smaller axial pile forces are induced on the piles inside the pile groups than those computed from the single piles since the piles responded as a block with the surrounding ground. Also tensile pile forces are induced associated with the upward resisting skin friction at the upper part of pile and the downward acting skin friction at the lower part of pile. On the contrary, when the piles were outside the influence zone, tunnelling-induced compressive pile forces developed. Based on computed load and displacement relation of the pile, the apparent factor of safety of the piles was reduced up to about 45%. Therefore the serviceability of the piles may be substantially reduced. The pile behaviour, when considering the single piles and the pile groups with regards to the influence zone, has been analysed by considering the key features in great details.

; ; ; pp.653-664
초록보기
Abstract

When the structural analysis is performed for the concrete lining of the water pressure tunnel, many parameters are considered such as relaxed ground loads, internal water pressure, external water pressure, the shrinkage of the concrete lining, grouting pressure, etc. But, there are no standards and manuals for the structural analysis for the concrete lining of the water pressure tunnel. Above all, the external water pressure has an much effect on the stability of tunnel. So, in case that permeability of ground is large, the external water pressure should be decreased by installation of weep hole, or reinforced ground by ground improvement grouting should be pressed by the external water pressure instead. But, when weep hole is installed to reduce the external water pressure, the many problems may me occurred. Thus, reasonable approach for treatment of the external water pressure is necessary if weep hole is not installed. Therefore, the purpose of this study is to analyze design cases and studies for treatment of the external water pressure in performing structural analysis for the concrete lining of the water pressure tunnel, and to find reasonable method for tunnel lining modeling which is the treatment of the external water pressure according to permeability of ground and consequently the design of ground improvement grouting.

; ; ; pp.665-674
초록보기
Abstract

A TSL (Thin Spray-on Liner) which consists of polymers has a higher initial strength, faster construction time and higher waterproofing performance than the conventional cementitious shotcrete. Main supporting mechanism of TSL is the adhesion and tensile strength which is distinct from the conventional shotcrete. Even though highly in demand due to its outstanding characteristics, TSL is not yet well-known support material. In this study, to evaluate contact behavior of TSL, numerical analysis was performed with comparing result from laboratory tests. From the analysis, cohesive behavior at the contact surface between TSL and rock can be evaluated by using combination of cohesive and the damage model. In addition, results show that the cohesive stiffness controled slope between force and displacement, the fracture energy controled level of force at the contact.

; ; ; pp.675-683
초록보기
Abstract

The room-and-pillar construction method for underground space is adopted from the room-and-pillar mining method which is one of the most popular underground mining method in the world. Drainage system in the room-and-pillar underground construction method can be similar with the concept of single shell in tunnel because additional reinforcement except the TSL (thin spray-on liner) is not applied in the room-and-pillar construction method. That is, to decrease groundwater level and maintain safety in tunnel, the drainage pin hole inside lining (shotcrete) can be used. However, if total amount of outflow in the underground structure is relatively small or groundwater is not detected, such drainage system will not be useful and cause additional construction cost. In this study, outflow of conventional tunnels in South Korea was investigated and the criteria to determine whether the drainage pin hole is effective was suggested. And the guided drainage system was suggested when drainage pin hole was not applied in the room-and-pillar construction method.

; ; ; ; pp.685-693
초록보기
Abstract

There have been high demands for urban underground structures. However, they should be rapidly constructed while maintaining the functions of adjacent structures and road systems especially in urban areas. In this respect, trenchless excavation methods are considered to very effective in minimizing ground displacements during excavation works. A variety of field conditions such as economic, technical and environmental aspects should be taken into consideration when an optimum trechless excavation method is to be chosen in a given condition. Therefore, this study aims to carry out a fundamental study to select an optimum trenchless excavation method by the decision making technique. Especially, AHP (Analytic Hierarchy Process) which is a kind of a multiple attribute decision making process is adopted to consider the opinions of experts and to derive reliable decision criteria. As a result, the weights of key factors and the most effective trenchless methods for different ground conditions were proposed in this study.

; pp.695-702
초록보기
Abstract

Recently, the improvement of mechanical and theoretical issues in geo-centrifuge test enhances the applicability and accuracy of the test. Geo-centrifuge test is appropriate to simulate the behaviors of underground structures like tunnel, since tunnel interacts with the soil and/or rock around it and the test can embody the in-situ stress conditions effectively. In this study, the seismic behaviors of twin tunnel were analyzed based on geo-centrifuge test. Flexible segment to mitigate seismic acceleration were implemented in the model with thin and thick thickness. Based on the test results, it was found that flexible segment can decrease the peak acceleration generally, however, thin flexible segment was not able to reduce peak acceleration in short-period seismic wave. Thick flexible segment was more effective in case of high bedrock acceleration condition. Additionally, 3-dimensional numerical analysis was performed to verify the characteristics of seismic behavior and the effect of flexible segment. Consequently, the numerical analysis result showed good agreement with the test result.

(사)한국터널지하공간학회