open access
메뉴ISSN : 1225-3480
Our previous findings revealing that Karenia mikimotoi toxicity might not be potent enough to cause abalone Haliotis discus hannai mass mortality necessitated further verification in more scientific ways. Focal points were on exposure extension and use of replication and harmless flagellate reference for valid comparison. The exposure lasted 2 days with a daily solution renewal. Harmless Tetraselmis suecica were additionally tested as a reference. All the tests were duplicated. The key methods otherwise mentioned followed our previous study (see Korean J. Malacol. 35(2): 87-92). Results were clear-cut, harmless or harmful. K. mikimotoi at 2 x 104 cells ml-1 together with the two references, seawater and T. suecica at 10 x 104 cells ml-1, were harmless all the way throughout the exposure, while a reference, Cochlodinium polykrikoides at 5 x 103 cells ml-1, was markedly harmful. C. polykrikoides damage was statistically significant from 12 hours after exposure (P < 0.05). These data are highly suggestive of lower damage potential of K. mikimotoi to the abalone even though something uncertain and thus needing verification are still existing.
Baden, D.G. and Tomas, C.R. (1988) Variations in major toxin composition for six clones of Ptychodiscus brevis. Toxicon, 26(10): 961-963.
Bravo, I., Cacho, E., Franco, J. M., Miguez, A., Reyero, M. I. and Martinez, A. (1996) Study of PSP toxicity in Haliotis tuberculata from the Galician coast. Harmful and Toxic Algal Blooms, 421-424.
Bravo, I., Reyero, M. I., Cacho, E. and Franco, J. M. (1999) Paralytic shellfish poisoning in Haliotis tuberculata from the Galician coast: geographical distribution, toxicity by lengths and parts of the mollusc. Aquatic toxicology, 46(2): 79-85.
Botes, L., Smit, A.J. and Cook, P.A. (2003) The potential threat of algal blooms to abalone (Haliotis midae)mariculture industry situated around the South African coast. Harmful Algae, 2: 247-256.
Brand, L.E., Campbell, L. and Bresnan, E. (2012)Kerenia: The biology and ecology of toxic genus. Harmful Algae, 14: 156-178.
Barnes, M.K., Tilstone, G.H., Smyth, T.J., Widdicombe, C.E., Gloël, J., Robinson, C., Kaiser, J. and Suggett, D.J. (2015) Drivers and effects of Karenia mikimotoi blooms in the western English Channel. Progress in oceanography, 137: 456-469.
Diaz, J.M. and Plummer, S. (2018) Production of extracellular reactive oxygen species by phytoplankton: past and future directions. Journal of plankton research, 40(6): 655-666.
Gago-Martinez, A., Comesana-Losada, M., Leao-Martins, J.M. and Rodriguez-Vazquez, J.A. (1996) Study on DSP and PSP toxic profile in Haliotis tuberculata. Ciencia(Maracaibo), 4(4): 335-342.
Gentien, P., Lunven, M., Lazure, P., Youenou, A. and Crassous, M.P. (2007) Motility and autotoxicity in Karenia mikimotoi (Dinophyceae). Philosophical Transactions of the Royal society B: Biological sciences, 362(1487): 1937-1946.
Garg, S., Rose, A.L., Godrant, A. and Waite, T.D. (2007)Iron uptake by the ichthyotoxic Chattonella marina (Raphidophyceae): impact of superoxide generation 1. Journal of phycology, 43(5): 978-991.
Horstman, D.A., McGibbon, S., Pitcher, G.C., Calder, D., Hutchings, L. and Williams, P. (1991) Red tides in False Bay, 1959–1989, with particular reference to recent blooms of Gymnodinium sp. Transactions of the Royal Society of South Africa, 47: 611-628.
Hardison, D.R., Sunda, W.G., Shea, D. and Litaker, R.W. (2013) Increased toxicity of Karenia brevis during phosphate limited growth: ecological and evolutionary implications. PLoS One, 8(3): e58545.
Jenkinson, I., and Arzul, G. (2001) Mitigation by cysteine compounds of rheotoxicity, cytotoxicity and fish mortality caused by the dinoflagellates, Gymnodinium mikimotoi and G. maguelonnense. In; Harmful Algal Blooms 2000 (ed. by Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., Lewis, R.J.), pp. 461–464. Intergovernmental Oceanographic Commission, UNESCO, Paris,
Kim, D. and Oda, T. (2010) Possible factors responsible for the fish-killing mechanisms of the red tide phytoplankton, Chattonella marina and Cochlodinium polykrikoides. Coastal Environmental and Ecosystem Issues of the East China Sea, 245-268.
Kim, D, Wencheng L, Matsuyama Y, Cho K, Yamasaki Y, Takeshita S, Yamaguchi K, Oda T. (2019)Extremely high level of reactive oxygen species (ROS) production in a newly isolated strain of the dinoflagellate Karenia mikimotoi. European Journal of Phycology, DOI: 10.1080/09670262.2019.1632936.
Liu, W., Au, D.W., Anderson, D.M., Lam, P.K. and Wu, R.S. (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. Journal of experimental marine biology and ecology, 346(1-2):76-86.
Li, Y., Yu, J., Sun, T., Liu, C., Sun, Y. and Wang, Y. (2018) Using the marine rotifer Brachionus plicatilis as an endopoint to evaluate whether ROS-dependent hemolytic toxicity is involved in the allelopathy induced by Karenia mikimotoi. Toxins, 10: 439.
Lee, S.J., Jo, Q., Ok, H.N., Choi, H.S., Park, Y.T. and Son, M.H. (2018) Damage potential of Karenia mikimotoi to the farmed abalones sapts Haliotis discus hannai. The Korean Journal of Malacology, 34(2): 89-94.
Lee, S.J., Jo, Q., Han, J., Jeon, M.A., Kim, B.S., Park, Y.T. and Son, M.H. (2019) Damage potential of Karenia mikimotoi to abalones Haliotis discus hannai. The Korean Journal of Malacology, 35(2):87-92.
McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological chemistry, 244(22): 6049-6055.
Matsuyama, Y., Koisumi, Y. and Uchida, T. (1998) Effect of harmful phytoplankton on the survival of the abalones, Haliotis discus and Sulculus diversicolor. Bulletin of the Nansei National Fisheries Research Institute, 31: 19-24.
Mooney, B.D., Nichols, P.D., De Salas, M.F. and Hallegraeff, G.M. (2007) Lipid, fatty acid, and sterol composition of eight species of kareniaceae (dinophyta):chemotaxonomy and putative lipid phycotoxins. Journal of Phycology, 43(1): 101-111.
Mitchell, S. and Rodger, H. (2007) Pathology of wild and cultured fish affected by a Karenia mikimotoi bloom in Ireland, 2005. Bulletin-European Association of Fish Pathologists, 27(1): 39.
McLeod, C., Dowsett, N., Hallegraeff, G., Harwood, D. T., Hay, B., Ibbott, S., Malhi, N., Murray, S., Smith, K., Tan, J. and Turnbull, A. (2017) Accumulation and depuration of paralytic shellfish toxins by Australian abalone Haliotis rubra: Conclusive association with Gymnodinium catenatum dinoflagellate blooms. Food control, 73: 971-980.
Neely, T. and Campbell, L. (2006) A modified assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae, 5: 592-598.
Oda, T., Moritomi, J., Kawano, I., Hamaguchi, S., Ishimatsu, A. and Muramatsu, T. (1995) Catalase-and superoxide dismutase-induced morphological changes and growth inhibition in the red tide phytoplankton Chattonella marina. Bioscience, biotechnology, and biochemistry, 59(11): 2044-2048.
Pitcher, G.C., Franco, J.M., Doucette, G.J., Powell, C.L. and Mouton, A. (2001) Paralytic Shellfish Poisoning in the abalone Haliotis midae on the West Coast of South Africa. Journal of shellfish research, 20(2):895-904.
Pierce, R.H., and Henry, M.S. (2008) Harmful algal toxins of the Florida red tide (Karenia brevis):natural chemical stressors in South Florida coastal ecosystems. Ecotoxicology, 17(7): 623-631.
Sawada, S. and Wada, Y. (1983) Several examination of a Gymnodinium sp. Type 65 red tide occurred in Uwa Sea on resistibility of fish and shellfish. Reports on the Assessments of Red Tide Prediction, Fishery Agency of Japan. p. 131-140 (in Japanese)
Sellem, F., Pesando, D., Bodennec, G., El Abed, A. and Girard, J.P. (2000) Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotus lividus. Water Research, 34(2): 550-556.
Satake, M., Shoji, M., Oshima, Y., Naoki, H., Fujita, T. and Yasumoto, T. (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Letters, 43:5829-5832.
Satake, M., Tanaka. Y., Ishikura, Y., Naoki, H. and Yasumoto, T. (2005) Gymnocin-B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium)mikimotoi. Tetrahedron Letters, 46: 3537-3540.
Shi, F., McNabb, P., Rhodes, L., Holland, P., Webb, S., Adamson, J., Immers, A., Gooneratne, R. and Holland, J. (2012) The toxic effects of three dinoflagellate species from the genus Karenia on invertebrate larvae and finfish. New Zealand Journal of Marine and Freshwater Research, 46: 149-165.
Tester, P.A., Shea, D., Kibler, S.R., Varnam, S.M., Black, M.D. and Litaker, R.W. (2008) Relationships among water column toxins, cell abundance and chlorophyll concentrations during Karenia brevis blooms. Continental Shelf Research, 28(1): 59-72.
Yamasaki Y, Kim D, Matsuyama Y., Oda, T and Honjo, T. (2004) Production of superoxide anion and hydrogen peroxide by the red tide dinoflagellate Karenia mikimotoi, Journal of Bioscience and Bioengineering, 97: 212-215.
Zou, Y., Yamasaki, Y., Matsuyama, Y., Yamaguchi, K., Honjo, T. and Oda, T. (2010) Possible involvement of hemolytic activity in the contact-dependent lethal effects of the dinolagellate Karenia mikimotoi on the rotifer Brachionus plicatilis. Harmful Algae, 9(4):367-373.