바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

Arginine Kinase를 이용한 대추귀고둥 (Ellobium chinense) 의 분자계통학적 분석

Molecular Phylogenetic Analysis of Ellobium chinense Using Arginine Kinase

Abstract

In Korea, Ellobium chinense is one of the well-known small, air-breathing snails, and was registered as the endangered species in 2005. The number of E. chinense populations has rapidly declined in recent years. In this context, genetic information of E. chinense is needed for species conservation in the future. However, the registered genetic information of E. chinense in NCBI is only 55 nucleotides and 53 proteins. Thus, we sequenced an E. chinense cDNA library using the Illumina platform, and selected arginine kinase (AK) gene which has been used as a molecular phylogenetic marker. AK sequence of E. chinense was analyzed through bioinformatic programs, and the biological importance of E. chinense was discussed in conjuntion with molecular phylogenetic trees.

keywords
Arginine kinase (AK), Ellobium chinense, Illimina Hiseq 2500, phylogenetic analysis

참고문헌

1.

Buchan, D.W.A., and Jones, D.T. (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids. Res., 47: W402-W407.

2.

Ellington, W., and Suzuki, T. (2006) Evolution and divergence of creatine kinase genes. Molecular anatomy and physiology of proteins: creatine kinase. Nova Science, New York: 1-27.

3.

Ellington, W.R. (2001) Evolution and physiological roles of phosphagen systems. Annual review of physiology, 63: 289-325.

4.

Felsenstein, J. (1985) Confidence limits on phylogenies:an approach using the bootstrap. evolution, 39:783-791.

5.

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B.W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29: 644-652.

6.

Haas, B., and Papanicolaou, A. (2016) TransDecoder (find coding regions within transcripts). Google Scholar.

7.

Jarilla, B.R., Uda, K., Suzuki, T., Acosta, L.P., Urabe, M., and Agatsuma, T. (2014) Characterization of arginine kinase from the caenogastropod Semisulcospira libertina, an intermediate host of Paragonimus westermani. Journal of Molluscan Studies, 80: 444-451.

8.

Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8: 275-282.

9.

Joshi, N., and Fass, J. (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33)[Software]

10.

Kang, S.W. (2016) Genome and transcriptome characterization of the four Korean land snails using NGS and bioinformatics databases. Department of Biology, Gradute School of Soonchunhyang University.

11.

Kang, S.W., Park, S.Y., Hwang, H.J., Chung, J.M., Sang, M.K., Min, H.R., Park, J.E., Cho, H.C., Patnaik, B.B., and Lee, Y.S. (2019) PANM DB ver 3.0 : An update of the bioinformatics database for annotation of large datasets from sequencing of species under Protostomia clade. The Korean Journal of Malacology, 35: 73-75.

12.

Kang, S.W., Patnaik, B.B., Hwang, H.J., Park, S.Y., Chung, J.M., Song, D.K., Patnaik, H.H., Lee, J.B., Kim, C., Kim, S., Park, H.S., Park, S.H., Park, Y.S., Han, Y.S., Lee, J.S., and Lee, Y.S. (2017) Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: Annotation and SSR discovery. Comp. Biochem. Physiol. Part D. Genomics Proteomics, 21:77-89.

13.

Kang, S.W., Patnaik, B.B., Park, S.Y., Hwang, H.J., Chung, J.M., Sang, M.K., Min, H.R., Park, J.E., Seong, J., Jo, Y.H., Noh, M.Y., Lee, J.D., Jung, K.Y., Park, H.S., Han, Y.S., Lee, J.S., and Lee, Y.S. (2018)Transcriptome analysis of the threatened snail Ellobium chinense reveals candidate genes for adaptation and identifies SSRs for conservation genetics. Genes Genomics, 40: 333-347.

14.

Köhler, F., and Rintelen. (2011) Ellobium chinense. The IUCN Red List of Threatened Species 2011. The IUCN Red List of Threatened Species.

15.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol., 35: 1547-1549.

16.

Lee, J.S., and Son, M.-H. (2012) Red Data Book of Endangered Mollusks in Korea.

17.

Li, R., Zhang, S., Zhang, L., Yu, K., Wang, S., and Wang, Y. (2020) Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf. Environ. Pollut., 263: 114-368.

18.

Lopata, A.L., Kleine-Tebbe, J., and Kamath, S.D. (2016)Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25: 210-218.

19.

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids. Res., 47: W636-W641.

20.

Mahon, B.C., and Neigel, J.E. (2008) Utility of arginine kinase for resolution of phylogenetic relationships among Brachyuran genera and families. Mol. Phylogenet Evol., 48: 718-727.

21.

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011, 17:(3).

22.

McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16: 404-405.

23.

McLeish, M.J., and Kenyon, G.L. (2005) Relating structure to mechanism in creatine kinase. Critical reviews in biochemistry and molecular biology, 40:1-20.

24.

Min, D.-K. (2004) Mollusks in Korea pp. Min Molluscan Research Institute.

25.

Min, H.R., Hwang, H.J., Chung, J.M., Sang, M.K., Cho, H.C., Park, J.E., Jung, K.Y., Park, H.S., Han, Y.S., and Lee, Y.S. (2018) Molecular Phylogenetic studies of Mirus junensis using Arginine kinase gene sequence. The Korean Journal of Malacology, 34:107-114.

26.

Min Kyu Sang, Hee-Ju Hwang, Jong Min Chung, Jie Eun Park, Dae Kwon Song, Jun Yang Jeong, So Young Park, Hong seog Park, Yong Hun Jo, Jong dae Lee, Jun Sang Lee, Yong Seok Lee, and Kang, S.W. (2020) Phylogenetic analysis of endangered wild animal Class II Satsuma myomphala using the argrinine kinase gene. The Korean Journal of Malacology, 36: 97-104.

27.

Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., Lee, Y., White, J., Cheung, F., Parvizi, B., Tsai, J., and Quackenbush, J. (2003)TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19: 651-652.

28.

Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS:the European molecular biology open software suite. Elsevier current trends.

29.

Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4: 406-425.

30.

Suzuki, T., Fukuta, H., Nagato, H., and Umekawa, M. (2000) Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J. Biol. Chem., 275: 23884-23890.

31.

Suzuki, T., and Furukohri, T. (1994) Evolution of phosphagen kinase: primary structure of glycocyamine kinase and arginine kinase from invertebrates. Journal of molecular biology, 237:353-357.

32.

Suzuki, T., Inoue, N., Higashi, T., Mizobuchi, R., Sugimura, N., Yokouchi, K., and Furukohri, T. (2000) Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNA-derived amino acid sequences. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 127: 505-512.

33.

Suzuki, T., Kawasaki, Y., and Furukohri, T. (1997)Evolution of phosphagen kinase1: Isolation, characterization and cDNA-derived amino acid sequence of two-domain arginine kinase from the sea anemone Anthopleura japonicus. Biochemical Journal., 328: 301-306.

34.

Tanaka, K., Ichinari, S., Iwanami, K., Yoshimatsu, S., and Suzuki, T. (2007) Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Insect Biochem. Mol. Biol., 37: 338-345.

35.

Uda, K., Fujimoto, N., Akiyama, Y., Mizuta, K., Tanaka, K., Ellington, W.R., and Suzuki, T. (2006) Evolution of the arginine kinase gene family. Comp. Biochem. Physiol. Part D Genomics Proteomics, 1: 209-218.

36.

Uda, K., Ishida, M., Matsui, T., and Suzuki, T. (2010)Arginine Kinase from the Tardigrade, Macrobiotus occidentalis: Molecular Cloning, Phylogenetic Analysis and Enzymatic Properties. Zoological Science, 27:796-803, 798.

37.

Uda, K., Iwai, A., and Suzuki, T. (2005)Hypotaurocyamine kinase evolved from a gene for arginine kinase. FEBS Lett., 579: 6756-6762.

38.

Uda, K., and Suzuki, T. (2007) A novel arginine kinase with substrate specificity towards D-arginine. The protein journal., 26: 281-291.

39.

Uda, K., Yamamoto, K., Iwasaki, N., Iwai, M., Fujikura, K., Ellington, W.R., and Suzuki, T. (2008)Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151:176-182.

40.

Wyss, M., Smeitink, J., Wevers, R.A., and Wallimann, T. (1992) Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1102: 119-166.

41.

서재화, 권선만, 이수연, 박창득, 이소희, 이정연, 유정선, and 서민환 (2018) 한눈에 보는 멸종위기 야생생물 (2017년 개정)

logo