바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

CHARACTERIZATION OF A REGULAR FUNCTION WITH VALUES IN DUAL QUATERNIONS

Characterization of a regular function with values in dual quaternions

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.65-74
https://doi.org/10.7468/jksmeb.2015.22.1.65
Kim, Ji Eun (Department of Mathematics, Pusan National University)
Shon, Kwang Ho (Department of Mathematics, Pusan National University)

Abstract

In this paper, we provide the notions of dual quaternions and their algebraic properties based on matrices. From quaternion analysis, we give the concept of a derivative of functions and and obtain a dual quaternion Cauchy-Riemann system that are equivalent. Also, we research properties of a regular function with values in dual quaternions and relations derivative with a regular function in dual quaternions.

keywords
quaternion analysis, derivative, Cauchy-Riemann system, regular function, dual quaternion

참고문헌

1.

Naser, M.;. (1971). Hyperholomorphic functions. Silberian Math. J., 12, 959-968.

2.

Koriyama, H.;Mae, H.;Nôno, K.;. (2011). On regularities of octonionic functions and holomorphic mappings. Bull. Fukuoka Univ. Ed. part III, 60, 11-28.

3.

Lim, S.J.;Shon, K.H.;. (2012). Properties of hyperholomorphic functions in Clifford analysis. East Asian Math. J., 28(5), 553-559. 10.7858/eamj.2012.040.

4.

Lim, S.J.;Shon, K.H.;. (2013). Dual quaternion functions and its applications. J. Applied Math., , 6.

5.

Nôno, K.;. (1983). Hyperholomorphic functions of a quaternion variable. Bull. Fukuoka Univ. Ed., 32, 21-37.

6.

Kim, J.E.;Lim, S.J.;Shon, K.H.;. (2013). Taylor series of functions with values in dual quaternion. J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math., 20(4), 251-258.

7.

Gotô, S.;Nôno, K.;. (2012). Regular Functions with Values in a Commutative Subalgebra ℂ(ℂ) of Matrix Algebra M(4;ℝ). Bull. Fukuoka Univ. Ed. Part 3, 61, 9-15.

8.

Kajiwara, J.;Li, X.D.;Shon, K.H.;. (2004). Regeneration in complex, quaternion and Clifford analysis (287-298). Proc. the 9th International Conf. on Finite or Infinite Dimensional Complex Analysis and Applications, Adv. Complex Anal. Appl..

9.

Kajiwara, J.;Li, X.D.;Shon, K.H.;. (2006). Function spaces in complex and Clifford analysis, Inhomogeneous Cauchy Riemann system of quaternion and Clifford analysis in ellipsoid (127-155). Proc. the 14th International Conf. on Finite or Infinite Dimensional Complex Analysis and Applications.

10.

Kim, J.E.;Lim, S.J.;Shon, K.H.;. (2013). Regular functions with values in ternary number system on the complex Clifford analysis. Abstr. Appl. Anal., 2013, 7.

11.

Kim, J.E.;Lim, S.J.;Shon, K.H.;. (2014). Regularity of functions on the reduced quaternion field in Clifford analysis. Abstr. Appl. Anal., 2014, 8.

12.

Kim, J.E.;Lim, S.J.;Shon, K.H.;. (2014). The Regularity of functions on Dual split quaternions in Clifford analysis. Abstr. Appl. Anal., 2014, 8.

13.

Koriyama, H.;Mae, H.;Nôno, K.;. (2011). Hyperholomorphic fucntions and holomorphic functions in quaternionic analysis. Bull. Fukuoka Univ. Ed. part III, 60, 1-9.

한국수학교육학회지시리즈B:순수및응용수학