바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

EMPLOYING COMMON LIMIT RANGE PROPERTY WITH VARIANTS OF R-WEAKLY COMMUTING MAPPINGS IN METRIC SPACES

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.127-138
https://doi.org/10.7468/jksmeb.2015.22.2.127
CHAUHAN, SUNNY
VUJAKOVIC, JELENA
HAQ, SHAMSUL
  • Downloaded
  • Viewed

Abstract

The object of this paper is to emphasize the role of 'common limit range property' and utilize the same with variants of R-weakly commuting mappings for the existence of common fixed point under strict contractive conditions in metric spaces. We also furnish some interesting examples to validate our main result. Our results improve a host of previously known results including the ones contained in Pant [Contractive conditions and common fixed points, Acta Math. Acad. Paedagog. Nyh&#xE0;zi. (N.S.) 24(2) (2008), 257-266 MR2461637 (2009h:54061)]. In the process, we also derive a fixed point result satisfying <TEX>$\phi$</TEX>-contractive condition.

keywords
metric space, R-weakly commuting mappings, R-weakly commuting mappings of type (Ag), R-weakly commuting mappings of type (Af ), R-weakly commuting mappings of type (P), property (E.A), common limit range property, fixed point

Reference

1.

Sintunavarat, W.;Kumam, P.;. (2012). Common fixed points for R-weakly commuting in fuzzy metric spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat., 58(2), 389-406. 10.1007/s11565-012-0150-z.

2.

Sintunavarat, W.;Kuma, P.;. (2009). Coincidence and common fixed points for hybrid strict contractions without weakly commuting condition. Appl. Math. Lett., 22, 1877-1881. 10.1016/j.aml.2009.07.015.

3.

Sintunavarat, W.;Kumam, P.;Patthanangkoor, P.;. (2009). Common random fixed points for multivalued random operators without S and T-weakly commuting random. Random Oper. Stoch. Equ, 17(4), 381-388.

4.

Wairojjana, N.;Sintunavarat, W.;Kumam, P.;. (2014). Common tripled fixed points for W-compatible mappings along with CLRg property in abstract metric spaces. J. Inequal.Appl., 2014, 133. 10.1186/1029-242X-2014-133.

5.

Pant, R.P.;. (2000). Noncompatible mappings and common fixed points. Soochow J. Math., 26(1), 29-35.

6.

Pant, V.;. (2008). Contractive conditions and common fixed points. Acta Math. Acad. Paedagog. Nyh&#x00E1;zi. (N.S.), 24(2), 257-266.

7.

Pathak, H.K.;Cho, Y.J.;Kang, S.M.;. (1997). Remarks on R-weakly commuting mappings and common fixed point theorems. Bull. Korean Math. Soc., 34(2), 247-257.

8.

Radenovi&#x107;, S.;Kadelburg, Z.;Jandrli&#x107;, D.;Jandrli&#x107;, A.;. (2012). Some results on weakly contractive maps. Bull. Iran. Math. Soc., 38(3), 625-645.

9.

Singh, S.L.;Pant, B.D.;Chauhan, S.;. (2012). Fixed point theorems in Non-Archimedean Menger PM-spaces. J. Nonlinear Anal. Optim., 3(2), 153-160.

10.

Sastry, K.P.R.;Krishna Murthy, I.S.R.;. (2000). Common fixed points of two partially commuting tangential selfmaps on a metric space. J. Math. Anal. Appl., 250(2), 731-734. 10.1006/jmaa.2000.7082.

11.

Sessa, S.;. (1982). On a weak commutativity condition in fixed point considerations. Publ. Inst.Math. (Beograd) (N.S.), 32(46), 149-153.

12.

Singh, S.L.;Kumar, A.;. (2006). Common fixed point theorems for contractive maps. Mat.Vesnik, 58(3-4), 85-90.

13.

Singh, S.L.;Tomar, A.;. (2003). Weaker forms of commuting maps and existence of fixed points. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 10(3), 145-161.

14.

Sintunavarat, W.;Kumam, P.;. (0000). Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces. J. Appl. Math., 2011, 14.

15.

Kannan, R.;. (1968). Some results on fixed points. Bull. Calcutta Math. Soc., 60, 71-76.

16.

Jungck, G.;. (1986). Compatible mappings and common fixed points. Internat. J. Math. Math. Sci., 9(4), 771-779. 10.1155/S0161171286000935.

17.

Kadelburg, Z.;Radenovi&#x107;, S.;Rosi&#x107;, B.;. (0000). Strict contractive conditions and common fixed point theorems in cone metric spaces. Fixed Point Theory Appl., 2009.

18.

Kadelburg, Z.;Radenovi&#x107;, S.;Shahzad, N.;. (0000). A note on various classes of compatible type pairs of mappings and common fixed point theorems. Abstr. Appl. Anal., 2013.

19.

Pant, R.P.;. (1994). Common fixed points of noncommuting mappings. J. Math. Anal. Appl., 188(2), 436-440. 10.1006/jmaa.1994.1437.

20.

Kumar, S.;. (2010). A note on Jungck&#x2019;s fixed point theorem. Fasciculi Math., 45, 59-69.

21.

Long, W.;Abbas, M.;Nazir, T.;Radenovi&#x107;, S.;. (0000). Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstr. Appl. Anal., 2012.

22.

Murthy, P.P.;. (2001). Important tools and possible applications of metric fixed point theory (3479-3490). Nonlinear Anal.. 10.1016/S0362-546X(01)00465-5.

23.

Pant, R.P.;. (1998). Common fixed point theorems for contractive maps. J. Math. Anal. Appl., 226(1), 251-258. 10.1006/jmaa.1998.6029.

24.

Pant, R.P.;. (1999). Discontinuity and fixed points. J. Math. Anal. Appl., 240(1), 280-289. 10.1006/jmaa.1999.6559.

25.

Aamri, M.;El Moutawakil, D.;. (2002). Some new common fixed point theorems under strict contractive conditions. J. Math. Anal. Appl., 270(1), 181-188. 10.1016/S0022-247X(02)00059-8.

26.

Banach, S.;. (1922). Sur les op&#x00E9;rations dans les ensembles abstraits et leur application aux &#x00E9;quations int&#x00E9;grales. Fund. Math., 3, 133-181.

27.

&#x106;iri&#x107;, Lj.B.;. (1971). Generalized contractions and fixed point theorems. Publ. Inst. Math.(Beograd) (N.S.), 12(26), 19-26.

28.

Abbas, M.;Nazir, T.;Radenovi&#x107;, S.;. (2013). Common fixed point of power contraction mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput., 219, 7663-7670. 10.1016/j.amc.2012.12.090.

29.

Alghamdi, M.A.;Radenovi&#x107;, S.;Shahzad, N.;. (0000). On some generalizations of commuting mappings. Abstr. Appl. Anal., 2012.

30.

&#x110;ori&#x107;, D.;Kadelburg, Z.;Radenovi&#x107;, S.;. (2012). A note on occasionally weakly compatible mappings and common fixed points. Fixed Point Theory, 13(2), 475-480.

31.

Jungck, G.;. (1976). Commuting mappings and fixed point. Amer. Math. Monthly, 83(4), 261-263. 10.2307/2318216.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics