바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

A NOTE ON CONNECTEDNESS IM KLEINEN IN C(X)

A NOTE ON CONNECTEDNESS IM KLEINEN IN C(X)

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.2, pp.139-144
https://doi.org/10.7468/jksmeb.2015.22.2.139
BAIK, BONG SHIN (DEPARTMENT OF MATHEMATICS EDUCATION, WOOSUK UNIVERSITY)
RHEE, CHOON JAI (DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY)

Abstract

Abstract. In this paper, we investigate the relationships between the space X and the hyperspace C(X) concerning admissibility and connectedness im kleinen. The following results are obtained: Let X be a Hausdorff continuum, and let A ∈ C(X). (1) If for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U, then C(X) is connected im kleinen. at A. (2) If IntA ≠ ø, then for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U. (3) If X is connected im kleinen. at A, then A is admissible. (4) If A is admissible, then for any open subset U of C(X) containing A, there is an open subset V of X such that A ⊂ V ⊂ ∪U. (5) If for any open subset U of C(X) containing A, there is a subcontinuum K of X such that A ∈ IntK ⊂ K ⊂ U and there is an open subset V of X such that A ⊂ V ⊂ ∪ IntK, then A is admissible.

keywords
hyperspace, connected im kleinen, admissible

참고문헌

1.

Michael, E.;. (1951). Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71, 152-182. 10.1090/S0002-9947-1951-0042109-4.

2.

Makuchowski, W.;. (1999). On Local Connectedness in Hyperspaces. Bull. Polish. Acad. Sci. Math., 47(2), 119-126.

3.

Makuchowski, W.;. (2003). On Local Connectedness at a Subcontinuum and Smoothness of Continua. Houston J. Math., 4(3), 711-716.

4.

Rhee, C.J.;. (1985). Obstucting sets for hyperspace (159-173). Topology Proceedings.

5.

Whyburn, G.T.;. Analytic topology.

6.

Wojdyslawski, M.;. (1939). Retract absolus et hyperespaces des continus. Fund. Math., 32, 184-192.

7.

Goodykoontz, J.T.;. (1977). More on connectedness im kleinen and Local Connectedness in C(X). Proc. Amer. Math. Soc., 65, 357-364.

8.

Bennett, D.E.;Fugate, J.B.;. (1977). Continua and their non-separating subcontinua. Dissertationes Math. Rozprawy Mat., 149, 1-46.

9.

Czuba, S.T.;. (1979). R-continua and contractibility of dendroids. Bull. Acad. Polon. Sci., Ser. Sci. Math., 27, 299-302.

10.

Goodykoontz, J.T.;. (1974). Connectedness im kleinen and local connectedness in 2X and C(X). Pacific J. Math., 53, 387-397. 10.2140/pjm.1974.53.387.

11.

Goodykoontz, J.T.;. (1978). Local arcwise connectedness in 2X and C(X). Houston J. Math., 4, 41-47.

12.

Goodykoontz, J.T.;. (1998). Local properties of hyperspaces (183-200). Topology Proceedings.

13.

Goodykoontz, J.T.;Rhee, C.J.;. Topology.

한국수학교육학회지시리즈B:순수및응용수학