바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.4, pp.359-364
https://doi.org/10.7468/jksmeb.2015.22.4.359
KIM, JONGSU (Department of Mathematics, Sogang University)

Abstract

We present smooth simply connected closed 4k-dimensional manifolds N := N<sub>k</sub>, for each k &#x2208; {2, 3, &#x22EF;}, with distinct symplectic deformation equivalence classes [[&#x3C9;<sub>i</sub>]], i = 1, 2. To distinguish [[&#x3C9;<sub>i</sub>]]&#x2019;s, we used the symplectic Z invariant in <xref>[4]</xref> which depends only on the symplectic deformation equivalence class. We have computed that Z(N, [[&#x3C9;<sub>1</sub>]]) = &#x221E; and Z(N, [[&#x3C9;<sub>2</sub>]]) &#x3C; 0.

keywords
almost K&#x4d3, hler metric, scalar curvature, symplectic manifold, symplectic deformation equivalence class

참고문헌

1.

McDuff, D.;Salamon, D.;. Introduction to Symplectic Topology.

2.

Kim, J.;Sung, C.;. (0000). Scalar Curvature Functions of Almost-K&#x4D3;hler Metrics. Jour of Geometric Anal., .

3.

Kim, J.;. (2014). A simply connected manifold with two symplectic deformation equivalence classes with distinct signs of scalar curvatures. Comm. Korean Math. Soc., 29, 549-554. 10.4134/CKMS.2014.29.4.549.

4.

Catanese, F.;LeBrun, C.;. (1997). On the scalar curvature of Einstein manifolds. Math. Research Letters, 4, 843-854. 10.4310/MRL.1997.v4.n6.a5.

5.

Barlow, R.;. (1985). A Simply Connected Surface of General Type with <TEX>$p_g$</TEX> = 0. Invent. Math., 79, 293-301. 10.1007/BF01388974.

6.

Ruan, Y.;. (1994). Symplectic topology on algebraic 3-folds. J. Differential Geom., 39, 215-227.

7.

McMullen, C.T.;Taubes, C.H.;. 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations.

8.

Salamon, D.;. (2013). Uniqueness of symplectic structures. Acta Math. Vietnam, 38, 123-144. 10.1007/s40306-012-0004-x.

한국수학교육학회지시리즈B:순수및응용수학