- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 유류 오염 토양 중에 함유 되어 있는 다환방향족탄화수소류(PAHs)의 시험방법을 확립하고자 수행되었다. 토양 중 PAHs 시험방법으로 미국 EPA 및 ISO 시험방법 등을 비교검토하고 국내 오염 토양에 대한 적용성을 검토한 결과, 유류 오염토양의 분석을 위해서는 알루미나 전처리 방법이 보다 효율적인 것으로 나타났으며, 휘발성이 큰 naphthalene, acenaphthene, acenaphthylene, fluorene 등 4종을 제외한 PAHs 12종에 대한 회수율이 67~107%범위로 나타나 이들 물질에 대한 시험방법을 마련하였다. 또한, 유류로 오염된 토양 5점을 선정하여 시험방법에 대한 적용성 시험 결과, 분석대상 12종 PAHs는 모든 시료에서 <TEX>$78.68{\sim}275.57{\mu}g/kg$</TEX>로 검출되었으며, 이중 phenanthrene, pyrene, chrysene 등은 전체 농도의 약 70%로 대부분의 비율을 차지하였다. 특히 BaP의 경우 농도범위는 <TEX>$1.76{\sim}24.65{\mu}g/kg$</TEX>으로 나타났다.
본 연구에서는 유류 오염 토양 중에 함유 되어 있는 다환방향족탄화수소류(PAHs)의 시험방법을 확립하고자 수행되었다. 토양 중 PAHs 시험방법으로 미국 EPA 및 ISO 시험방법 등을 비교검토하고 국 내 오염 토양에 대한 적용성을 검토한 결과, 유류 오염토양의 분석을 위해서는 알루미나 전처리 방법이 보다 효율적인 것으로 나타났으며, 휘발성이 큰 naphthalene, acenaphthene, acenaphthylene, fluorene 등 4 종을 제외한 PAHs 12종에 대한 회수율이 67~107%범위로 나타나 이들 물질에 대한 시험방법을 마련하 였다. 또한, 유류로 오염된 토양 5점을 선정하여 시험방법에 대한 적용성 시험 결과, 분석대상 12종 PAHs 는 모든 시료에서 78.68~275.57 μg/kg로 검출되었으며, 이중 phenanthrene, pyrene, chrysene 등은 전체 농 도의 약 70%로 대부분의 비율을 차지하였다. 특히 BaP의 경우 농도범위는 1.76~24.65 μg/kg으로 나타났다.
1. WHO, “Polynuclear aromatic hydrocabons, In: Air quality guidelines for Europe, Copenhagen”, 105-117 World Health Organization Rerional Office for Europe, 1987.
2. WHO, “Non-heterocyclic polycyclic aromatic hydrocarbons, Geneva”, International program on chemical safety, 1997.
3. WHO, “Selected non-heterocyclic polycyclic aromatic hydrocarbons”, Geneva, World Health Organization(Environmental Health Criteria No. 202), 1998.
4. IARC, “Polynuclear aromatic compounds, part 4: Bitumens,coal-tar and derived products, shale-oils and soots”,271, Lyon, International Agency for Research on Cancer,1985.
5. IARC, “Overall evaluation of carcinogenicity: an updating of IARC monographs”, volumes 1 to 42(1987).
6. British Standard Institute, BS2000 Part 346, “Determination of refractive aromatics in unused lubricating base oils and asphaltene free petroleum fractions-dimethyl sulphoxide extraction refractive index method”, London,UK, 1996.
7. I. Pillai, L. Ritchie, R. Heywood, G. Wilson, B. Pahlavanpour,S. Setford and S. Saini, J. Chromatogr. A, 1064,205-212(2005).
8. I. Tolosa, S. J. de Mora, S. W. Fowler, J. P. Villeneuve,J. Bartocci and C. Cattini, Marin Pollution Bulletin, 50,1619-1633(2005).
9. M. G. Zemanek, S. J. T. Pollard, S. L. Kenefick and S. E.Hrudey, Environmental Pollution, 98, 239-252(1997).
10. US EPA Method 3540C, “Soxhlet extraction”, 1996.
11. US EPA Method 3541, “Automated soxhlet extraction”,1994.
12. US EPA Method 3550, “Ultrasonic extraction”, 2007.
13. US EPA Method 3545, “Pressurized fluid extraction”,2007.
14. US EPA Method 3560, “Supercritical fluid extraction of total recoverable petroleum hydrocarbons”, 1996.
15. US EPA Method 3611B, “Alumina column cleanup and separation of petroleum wastes”, 1996.
16. US EPA Method 3630, “Silica gel cleanup”, 1996.
17. US EPA Method 3640, “Gel-permeation cleanup”,1994.
18. ISO 18287, “Soil quality-determination of polycyclic aromatic hydrocarbons (PAH)-gas chromatographic method with mass spectrometric detection (GC-MS)”, 2005.
19. UK Environment agency, “The determination of polycyclic aromatic hydrocarbons in soil by dichloromethane extraction using gas chromatography with mass spectrometric detection”, 2003.