- P-ISSN 1225-0163
- E-ISSN 2288-8985
본 연구에서는 양쪽성 메조 다공성 실리카를 다양한 조건(용매, 계면활성제와 올리고머의 량, 용액의 pH)에서 합성하였다. 메조 다공성 실리카를 사용하여 염소 소독으로 인해 음용수 중에 미량 존재하는 변이원성 물질인 MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2-(5H)-furanone)의 흡착에 관한 특성을 연구하였다. 소수성과 친수성의 양쪽성 폴리우레탄 올리고머를 사용하여 합성된 메조다공성 실리카의 경우 뛰어난 흡착특성을 나타내었다. 그리고 보조 계면 활성제의 경우에는 비이온성이며 분자량이 큰 폴리 에틸렌 프로필렌 옥사이드(PEO-PPO)를 사용하여 합성된 메조 다공성 실리키가 가장 좋은 흡착 특성을 보였다.
Mesoporous silica was synthesized in a water solvent and in an ethanol solvent with the non and cationic cetyltrimethyl ammonium chloride (CTAC) by varying the amount of the amphiphilic acrylic urethane oligomer (AAU) and the pH of the solution. The adsorption of the MX (3-chloro-4 (dichloromethyl)-5-hydroxy-2-(5H)-furanone) in drinking water was studied using the synthesized mesoporous silica as an adsorbent. The most appropriate silica was synthesized in acidic conditions in the water solvent and in alkali conditions in the ethanol solvent. The average pore sizes of the synthesized mesosilica were 3 nm and more. The mesoporous silica synthesized by the addition of the AAU oligomer showed excellent adsorption characteristics. With respect to the co-surfactant, the best adsorption characteristics were obtained when the P64,a non-ionic surfactant with a high molecular weight, was used to synthesize the silica than when other co-surfactants were used. The adsorption rate decreased as the MX concentration in the water increased. Different adsorption equilibrium conditions were reached depending on the adsorbate MX concentration in the adsorbent and the solution. It was seen that perfect adsorption does not occur due to such equilibrium conditions.
1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature, 359-710(1992).
2. Beck J. S. and Vartuli J. C., J. Am. Chem. Soc., 114, 10834(1992).
3. Bonneviot, L., Giasson, S., Kaliaguine, S. and Stöcker, M., Microp. Mesop. Mater. (Editorial), 44-45(2001).
4. Ulrich, R., Toombes, G., Gruner, E. S., S. M. and Wiesner, U., J. Am. Chem. Soc. (Article), 125(43), 13084-13093 (2003).
5. Lachlan, M. J., Ginzburg, M. and Coombs, N., J. Am. Chem. Soc. (Article), 122(16), 3878-3891(2000).
6. Hartmann, M., Racouchot, S. and Bischof, C., Micro. Meso. Mater., 27, 309-320(1999).
7. Bois, L., Bonhomme, A., Ribes, A., Pais, B., Raffin, G., Tessier, F. and Colloi. Surf., A. Physicochemical Eng.Aspects, 221, 221-230 (2003).
8. Sayari, A., Hamoudi, S. and Yang, Y., Chem. Mater., 17, 212-216(2005).
9. Yoshitake, H., Yokoi, T. and Tatsumi, T., Chem. Mater., 15, 1713-1721(2003).
10. Araujo, A. S., Aquino, J., Souza, M. and Silva, A., J. Solid State Chem., 171, 371-374(2003).
11. Newalkar, B. L., Choudary, N. V. and Turaga, U., etc., Micro. Meso. Mater., 65, 267-276(2003).
12. Yamashita, H., Maekawa, K., Nakao, H. and Anpo, M., Appl. Surf. Sci., 237, 393-397(2004).
13. Zao, Y. S., Ding, M. Y. and Chen, D. P., Anal. Chim. Acta, 542, 193-198(2005).
14. Kim, J. Y., Shim, S. B. and Shim J. K., J. Appl. Polymer Sci., 87, 1666-1677(2003).
15. Sierra, L., Lopez, B., Guth, J. L., Micro. Meso. Mater., 39, 519-527(2000).
16. Pasqua, L., Testa, F., Aiello, R., Di Renzo, F. and Fajula, F., Micro. Meso. Mater., 44/45, 111-117(2001).