- P-ISSN 1225-0163
- E-ISSN 2288-8985
용매를 사용하지 않고 반복적으로 막 추출한 후 저온농축과 GC-MS로 물 중 BTEX를 분석하는 방법을 시도하였다. 물로부터 비공성막의 silicone 막을 투과한 BTEX를 He 기체를 통해 <TEX>$-100^{\circ}C$</TEX>의 저온 농축장치로 보낸 후 열 탈착과 GC-MS로 분석하였다. 물 시료(30 mL)는 10 mL/min로 흘려주었고, 한 번 추출된 시료는 다시 되돌려서 두 번 더 추출하였다. Benzene에 대한 회수율은 가장 높아 약 80%인 반면에, ethylbenzene과 xylenes에 대한 회수율은 3.5-10%로 낮은 편이었다. 그렇지만, RSD는 모두 10% 미만이었고 검량선의 직선성(<TEX>$r^2$</TEX>)도 0.9976-0.9997로 높은 편이었으며, 방법검출한계도 1.8 <TEX>${\mu}g$</TEX>/L 이었다. 이 방법은 짧은 추출 시간, 용매의 미사용 및 분석의 편의성의 장점을 갖고 있다.
An analytical method for solvent-free determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using repetitive membrane extractions coupled to cryofocusing and GC-MS was derived. BTEX compounds that permeated through a nonporous silicone membrane from the aqueous phase and evaporated into the acceptor phase were purged into a cryofocusing trap (-100 ℃) with helium gas. The BTEX compounds,thus enriched in the trap, were thermally desorbed into a capillary column GC and detected using an MS. The flow rate of the donor phase (30 mL water) was set at 10 mL/min, and membrane extractions, accomplished by returning the water drained from the extraction module to the sample container, were repeated three times at 20 ± 2 ℃. Although recoveries (%) were variable, from the highest for benzene (approximately 80%) to the lowest for ethylbenzene and xylenes (3.5-10%), the method showed satisfactory precision (RSD 2.2-10%)with good-linearity calibration curves (r^2 0.9976-0.9997 in 1-100 μg/L range) for all of the compounds. The method detection limits (MDLs) ranged from 0.16 to 1.8 μg/L. The results showed the method’s advantages such as short analysis time and overall simplicity without solvent compared to the conventional techniques.
1. Hylton, K. and Mitra, S., J. Chromatogr. A, 1152, 199-214 (2007).
2. Biziuk, M. and Przyjazny, A, J. Chromatogr. A, 733, 417-448 (1996).
3. Kolb, B., J. Chromatogr. A, 842, 163-205 (1999).
4. Louter, A. J. H., Vreuls, J. J. and Brinkman, U. A. Th., J. Chromatogr. A, 842, 391-426 (1999).
5. Ouyanga, G. and Pawliszyn, J., Trends Anal. Chem., 25, 692-703 (2006).
6. David, F. and Sandra, P., J. Chromatogr. A, 1152, 54-69(2007).
7. Cordero, B. M., Pavón, J. L. P., Pinto, C. G. Laespada, M. E. F., Martínez, R. C. and Gonzalo, E. R., J. Chromatogr. A, 902, 195-204 (2000).
8. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 56, 1621-1624 (1984).
9. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 279-295 (1989).
10. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 57, 2349-2351 (1985).
11. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 1011-1024 (1989).
12. Frantz, D. D. and Hardy, J. K., J. Environ. Sci. Health, A34, 695-704 (1999).
13. Köller, G., Popp, P., Weingart, K., Hauser, B. and Herrmann, W., Chromatographia, 57, S-229-S-233 (2003).
14. Pratt, K. F. and Pawliszyn, J., Anal. Chem., 64, 2107-2110 (1992).
15. Xu, Y. H. and Mitra, S., J. Chromatogr. A, 688, 171-180(1994).
16. Hauser, B. and Popp, P., J. Chromatogr. A, 909, 3-21(2001).
17. Sae-Khow, O. and Mitra, S., J. Chromatogr. A, 1217, 2736-2746 (2010).
18. Maden, A. J. and Hayward, M. J., Anal. Chem., 68, 1805-1811 (1996).
19. Hauser, B. and Popp, P., J. High Resol. Chromatogr., 22, 205-212 (1999).
20. Yang, M. J., Harms, S., Luo, Y. Z. and Pawliszyn, J., Anal. Chem., 66, 1339-1346 (1994).
21. 40 Code of Federal Register Appendix B to Part 136: Definition and Procedure for the Determination of the Method Detection Limit - Revision 1.11 (1994).
22. United States Environmental Protection Agency Method 524.3: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry – Version 1.0 (2009).