Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Solvent-free determination of BTEX in water using repetitive membrane extraction followed by GC-MS

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.5, pp.352-359
https://doi.org/10.5806/AST.2011.24.5.352



  • Downloaded
  • Viewed

Abstract

An analytical method for solvent-free determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using repetitive membrane extractions coupled to cryofocusing and GC-MS was derived. BTEX compounds that permeated through a nonporous silicone membrane from the aqueous phase and evaporated into the acceptor phase were purged into a cryofocusing trap (-100 ℃) with helium gas. The BTEX compounds,thus enriched in the trap, were thermally desorbed into a capillary column GC and detected using an MS. The flow rate of the donor phase (30 mL water) was set at 10 mL/min, and membrane extractions, accomplished by returning the water drained from the extraction module to the sample container, were repeated three times at 20 ± 2 ℃. Although recoveries (%) were variable, from the highest for benzene (approximately 80%) to the lowest for ethylbenzene and xylenes (3.5-10%), the method showed satisfactory precision (RSD 2.2-10%)with good-linearity calibration curves (r^2 0.9976-0.9997 in 1-100 μg/L range) for all of the compounds. The method detection limits (MDLs) ranged from 0.16 to 1.8 μg/L. The results showed the method’s advantages such as short analysis time and overall simplicity without solvent compared to the conventional techniques.

keywords
BTEX, cryofocusing, GC-MS, repetitive membrane extractions, nonporous silicone membrane


Reference

1

1. Hylton, K. and Mitra, S., J. Chromatogr. A, 1152, 199-214 (2007).

2

2. Biziuk, M. and Przyjazny, A, J. Chromatogr. A, 733, 417-448 (1996).

3

3. Kolb, B., J. Chromatogr. A, 842, 163-205 (1999).

4

4. Louter, A. J. H., Vreuls, J. J. and Brinkman, U. A. Th., J. Chromatogr. A, 842, 391-426 (1999).

5

5. Ouyanga, G. and Pawliszyn, J., Trends Anal. Chem., 25, 692-703 (2006).

6

6. David, F. and Sandra, P., J. Chromatogr. A, 1152, 54-69(2007).

7

7. Cordero, B. M., Pavón, J. L. P., Pinto, C. G. Laespada, M. E. F., Martínez, R. C. and Gonzalo, E. R., J. Chromatogr. A, 902, 195-204 (2000).

8

8. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 56, 1621-1624 (1984).

9

9. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 279-295 (1989).

10

10. Blanchard, R. D. and Hardy, J. K., Anal. Chem., 57, 2349-2351 (1985).

11

11. Zhang, G.-Z. and Hardy, J. K., J. Environ. Sci. Health, A24, 1011-1024 (1989).

12

12. Frantz, D. D. and Hardy, J. K., J. Environ. Sci. Health, A34, 695-704 (1999).

13

13. Köller, G., Popp, P., Weingart, K., Hauser, B. and Herrmann, W., Chromatographia, 57, S-229-S-233 (2003).

14

14. Pratt, K. F. and Pawliszyn, J., Anal. Chem., 64, 2107-2110 (1992).

15

15. Xu, Y. H. and Mitra, S., J. Chromatogr. A, 688, 171-180(1994).

16

16. Hauser, B. and Popp, P., J. Chromatogr. A, 909, 3-21(2001).

17

17. Sae-Khow, O. and Mitra, S., J. Chromatogr. A, 1217, 2736-2746 (2010).

18

18. Maden, A. J. and Hayward, M. J., Anal. Chem., 68, 1805-1811 (1996).

19

19. Hauser, B. and Popp, P., J. High Resol. Chromatogr., 22, 205-212 (1999).

20

20. Yang, M. J., Harms, S., Luo, Y. Z. and Pawliszyn, J., Anal. Chem., 66, 1339-1346 (1994).

21

21. 40 Code of Federal Register Appendix B to Part 136: Definition and Procedure for the Determination of the Method Detection Limit - Revision 1.11 (1994).

22

22. United States Environmental Protection Agency Method 524.3: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry – Version 1.0 (2009).

상단으로 이동

Analytical Science and Technology