ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

수용액에서 브롬산 이온을 제거하는 방법

Removal of BrO_3^− from aqueous solution

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.5, pp.401-405
https://doi.org/10.5806/AST.2011.24.5.401
임헌성 (한국화학연구원)
김종혁 (한국화학연구원)
이석근 (한국화학연구원)
  • 다운로드 수
  • 조회수

초록

본 연구는 수용액 중의 발암물질로 규제되고 있는 브롬산 이온(BrO_3^−)을 제거하는 방법에 관한 것이다. 브롬산 이온은 먹는 물의 정수 과정 중 브롬 이온의 존재 하에 오존 처리과정에서 생성되는 물질이다. 본 방법은 별다른 물리적 화학적 변화의 과정이 필요하지 않고, 활성알루미나를 이용하여 효과적으로 제거할 수 있어 먹는 물 등의 정수에도 유용하게 적용될 수 있다. 브롬산 이온 500 μg/L 농도의 용액을 표면 개질된 산성 활성알루미나를 사용하여 1~2 분 내에 95% 이상 제거하는 효과를나타내었다.

keywords
bromate, activated alumina

Abstract

The efficient removal of bromate (BrO_3^−) from aqueous solutions was investigated using activated alumina. Bromate is a disinfection by-product, generally formed by the reaction of ozone and bromide in drinking water during ozonation process. The removal efficiency was about 90% for bromate (500 ng/mL) ion with acidic activated alumina but over 95% with silver or aluminum treated acidic activated alumina without any treatments of neutral water within 1~2 min.

keywords
bromate, activated alumina


참고문헌

1

1. W. R. Haag, Environ. Sci. Technol., 17, 261-267 (1983).

2

2. Y. Kurogawa, Y. Hagashi, Y. Maekawa, M. Takahashi and T. Kokubo, Gann, 73, 335-341 (1982).

3

3. D. C. Wolf, L. M. Crosby, M. H. George, S. R. Kilburn, T. M. Moore, R. T. Miller and A. B. deAngelo, Toxicol. Pathol,. 26, 724-729 (1998).

4

4. W. J. Hunag and Y. L. Cheng, Sep. Purif. Technol., 59, 101-107 (2008).

5

5. T. F. Marhaba and K. Benggraine, Clean Technol. Environ. Policy, 5, 101-112 (2003).

6

6. European Union, Official J. Eur, Communities, 11, 23(L229) 1980.

7

7. U.S. EPA National primary drinking water standards, http://www.epa.gov/safewater/contaminants/index.html#listmcl.

8

8. WHO, Guide lines for drinking water quality, Chemical Aspect, Vol. 2, Geneva 1996.

9

9. L. S. Downing and R. Nerenberg, Biotechnol. Bioeng., 98, 543-550 (2007).

10

10. R. Butler, A. Godley, L. Lytton and E. Cartmell, Crit. Rev. Environ. Sci. Technol., 35, 193-217 (2005).

11

11. H. Kim, H. Yamada and H. Tsuno, Water Res., 41, 1441-1446 (2007).

12

12. B. Legube, B. Parinet, K. Gerinet, F. Berne and J. P. Croue, Water Res., 38, 2185-2195 (2004).

13

13. U. Pinkernell and U. von Gunten, Environ. Sci. Technol., 35, 2525-2531 (2001).

14

14. L. Wang, J. Zhang, J. Liu, H. He, M. Yang, J. Yu, Z. Ma and F. Jiang, J. Environ. Sci., 22(12), 1846-1853 (2010).

15

15. M. L. Bao, O. Griffini, D. Santianni, K. Barbieri, D. Burrini and F. Pantani, Water Res., 33(13), 2959-2970 (1999).

16

16. A. H. Konsowa, Desalination and Water Treatment, 12, 375-381(2009).

17

17. M. Asami, T. Aizawa, T. Morioka, W. Nishijima, A. Tabata and Y. Magara, Water Res., 33(12), 2797-2804 (1999).

18

18. W. J. Huang, C. Y. Chen and M. Y. Peng, Water SA, 30(3), 369-375 (2004).

19

19. S. W. Choi and S. C. Park, J. of KSEE, 26(2), 178-182 (2006).

20

20. C. T. Matos, S. Velizarov, M. A. M. Reis and J. G. Crespo, Environ. Sci. Technol., 42, 7702-7708 (2008).

21

21. F. M. M. Paschoal, G. Pepping, M. V. B. Zanoni and M. A. Anderson, Environ. Sci. Technol., 43, 7496-7502 (2009).

상단으로 이동

분석과학