Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Spectrofluorimetric determination of free cyanide ion with fluorescent safranine-O

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2012, v.25 no.3, pp.159-163
https://doi.org/10.5806/AST.2012.25.3.159

  • Downloaded
  • Viewed

Abstract

A spectrofluorimetric method has been developed for the determination of free CN− in real samples with fluorescent safranine-O. When safranine-O interacts electrostatistically with CN−, the fluorescent intensity of safranine-O is decreased. Several experimental conditions such as pH of the sample solution and the amount of safranine-O were optimized. Ag+ interfered higher than any other ions. Interference of Ag+ could be disregarded because Ag+ was scarcely contained or mostly complexed with CN− in selected real samples. With this proposed method, the linear range of CN− was from 5.0 to 110 ng/mL and the detection limit of CN−was 2.9 ng/mL. For validating this technique, real samples (Cu, Ag, Au electroplating wastewater, and untreated wastewater in university and in sewage treatment plant) were used. Recovery yields of 91.5%~106.0% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of free CN−.

keywords
<TEX>$CN^-$</TEX> ion, safranine-O, spectrofluorimetry, electroplating wastewater


Reference

1

1. C. N Sawyer, P. L. McCarty, G. F. Parkin, ‘Chemistry for Environmental Engineering’, 4th ed., 637, McGraw-Hill, New York, U.S.A. 1996.

2

2. D. Cacace, H Ashbaugh, N. Kouri, S. Bledsoe, S. Lancaster and S. Chalk, Anal. Chim. Acta, 589, 137-141 (2007).

3

3. S. Abbasi, R. Valinezhad and H Khani, Spectrochim. Acta A, 77, 112-116 (2010).

4

4. M. T. Fernndez-Argelles, J. M. Costa-Fernndez, R. Pereiro and A. Sanz-Medel, Anal. Chim. Acta, 491, 27-35 (2003).

5

5. A. Safavi, N. Maleki and H. R. Shahbaazi, Anal. Chim. Acta, 503, 213-221 (2004).

6

6. J. Lv, Z. Zhang, J. Li and L. Luo, Forensic Sci. Int., 148, 15-19 (2005).

7

7. P. C. do Nascimento, Denise Bohrer and L. M. de Carvalho, Talanta, 48, 341-346 (1999).

8

8. K. Papeovand Z. Glatz, J. Chromatogr. A, 1120, 268-272 (2006).

9

9. J. M. G. LaFuente, F. F. Martinez, J. A. V. Perz, S. F. Fernndez and A. Sanz-Medel, Anal. Chim. Acta, 410, 135-142 (2000).

10

10. B. Vallejo-Pecharromm and M. D. Luque de Castro, Analyst, 127, 267-270 (2002).

11

11. V. L. Gmez and J. M. Calatayud, Analyst, 123, 2103-2107 (1998).

12

12. D. L. Recalde-Ruiz, E. Andrs-Garcia and M. E. Diaz-Garcia, Analyst, 125, 2100-2105 (2000).

13

13. A. A. Ensafi and A. Kazemzadeh, Microchem. J., 72, 193-199 (2002).

14

14. Z. Cao, X. He, Z. Gao and L. Peng, Talanta, 49, 377-383 (1999).

15

15. G. D. Sharma, S. K. Sharma and M. S. Roy, Mater. Sci. Eng. B, 100, 13-17 (2003).

16

16. M. L. Gmez, V. Avila, H. A. Montejano and C. M. Previtali, Polymer, 44, 2875-2881 (2003).

상단으로 이동

Analytical Science and Technology