- P-ISSN 1225-0163
- E-ISSN 2288-8985
A determination method of aromatic amino acids such as trytophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) using luminol-H2O2-Cu(II) system has been presented. In the presence of an aromatic amino acid, the enhanced chemiluminescence (CL) intensity of luminol-H2O2-Cu(II) system was obtained by forming a complex between Cu(II) and the amino acid. Based on the above phenomenon, a sensitive and fast determination of three aromatic amino acids was performed using the CL method in batch-type detection system. To optimize determination conditions, the kinetic influence of an aromatic amino acid on the luminol-H2O2-Cu(II) system and the effects of H2O2 and Cu(II) concentration, pH, and buffers were investigated. Under the optimized conditions, the calibration curve was linear over the range from 1.0 × 10−6 to 2.0 × 10−5 M for Trp,1.0 × 10−6 to 2.0 × 10−5 M for Try, and 2.0 × 10−6 to 2.0 × 10−5 M for Phe, respectively. In this range, reproducibility (RSD, n = 4) of Trp, Try, and Phe were 3.21%, 2.64%, and 2.48%, respectively. The limit of detection (3σ/s) was calculated to be 6.8 × 10−7 M for Trp, 5.7 × 10−7 M for Try, and 9.6 × 10−7 M for Phe.
1. T. McKee and J. R. McKee, ‘Biochemistry: An introduction’, 2nd Ed., McGraw-Hill, New York, 1999.
2. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, ‘Essential cell biology’, 2nd Ed., Garland Science, New York, 2003.
3. S. Broer and M. Palacin, Biochem. J., 436, 193-211 (2011).
4. W. Leuchtenberger, K. Huthmacher and K. Drauz, Appl. Microbiol. Biotechnol., 69, 1-8 (2005).
5. K. A. Massey, C. H. Blakeslee and H. S. Pitkow, Amino acids, 14, 271-300 (1998).
6. Z. Zhang, S. Zhang and X. Zhang, Anal. Chim. Acta., 541, 37-47 (2005).
7. A. M. Powe, S. Das, M. Lowry, B. El-Zahab, S. O. Fakayode, M. L. Geng, G. A. Baker, L. Wang, M. E. McCarroll, G. Patonay, M. Li, M. Aljarrah, S. Neal and I. M. Warner, Anal. Chem., 82, 4865-4894 (2010).
8. M. R. Sangi, D. Jayatissa, J. P. Kim and K. A. Hunter, Talanta, 62, 924-930 (2004).
9. J. Lv, Z. Zhang, J. Li and L. Luo, Forensic Sci. Int., 148, 15-19 (2005).
10. D. T. Bostick and D. M. Hercules, Anal. Chem., 47(3), 447-452 (1975).
11. I. Parejo, C. Codina, C. Petrakis and P. Kefalas, J. Pharmacol. Toxicol., 44, 507-512 (2000).
12. J. S. Lee and H. B. Lim, Bull. Korean Chem. Soc., 28(12), 2315-2318 (2007).
13. P. Fletcher, K. N. Andrew, A. C. Calokerinos, S. Forbes and P. J. Worsfold, Luminescence, 16, 1-23 (2001).
14. C. A. Marquette and L. J. Blum, Anal. Bioanal. Chem., 385, 546-554 (2006).
15. L. G. Gracia, A. M. G. Campana, J. F. H. Perez and F. J. Lara, Anal. Chim. Acta., 640, 7-28 (2009).
16. I. P. A. Morais, I. V. Toth and A. O. S. S. Rangel, Talanta, 66(2), 341-347 (2004).
17. K. Tsukagoshi, M. Sumiyama, R. Nakajima, M. Nakayama and M. Maeda, Anal. Sci., 14, 409-412 (1998).
18. Y. M. Liu and Z. L. Liu, Chinese Chem. Lett., 21, 856-859 (2010).
19. S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, C. Boritz and L. Mulfinger, J. Chem. Educ., 84(2), 322-325 (2007).
20. H. A. Mottola and D. P. Bendito, Anal. Chem., 66(12), 131-162 (1994).
21. S. Y. Liao and C. W. Whang, J. Chromatogr. A., 736, 247-254 (1996).
22. Z. Li, K. Li and S. Tong, Analyt. Lett., 32(5), 901-913 (1999).
23. S. Kanhathaisong, S. Rattanaphani, V. Pattanaphani and T. Manyum, Suranaree J. Sci. Technol., 18(2), 159-165 (2011).
24. O. Altun and S. Bilcen, Spectrochim. Acta. A., 75, 789-793 (2010).
25. D. Badocco, P. Pastore, G. Favaro and C. Macca, Talanta, 72, 249-255 (2007).