ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

유도결합플라즈마 질량분석법을 이용한 혈장 중 극미량 납 분석

Trace level analysis of Pb in plasma by inductively coupled plasma/mass spectrometry

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2012, v.25 no.3, pp.190-196
https://doi.org/10.5806/AST.2012.25.3.190
이성배 (산업안전보건연구원)
양정선 (산업안전보건연구원)
최성봉 (산업안전보건연구원)
신호상 (공주대학교)
  • 다운로드 수
  • 조회수

초록

납에 의한 노출에 대한 평가에는 주로 전혈 중 납을 사용하고 있으나 전혈 중 납은 납의 단기노출에 대한 정보만을 제공한다는 단점이 있다. 납 노출의 만성적 노출지표인 혈장 중 납을 분석하기 위해서는 수 ng/L의 극미량 분석이 요구되어 납의 만성지표로서의 효용성 검증에 어려움이 있다. 본 연구에서는 납 노출 근로자의 만성 노출 지표로서 혈장 중 납을 분석하기 위하여 유도결합플라즈마 질량분석법을 정립하였다. 외부환경으로부터의 오염을 최소화시키기 위해 class 1,000 수준의 청정실을 설치한후 가동 전과 후의 부유 분진량을 확인한 후 극미량 시료 분석을 수행하였다. 표준 우태아 혈청을 이용하여 표준물 첨가법에 의한 표준편차를 이용하여 계산한 최소검출한계는 4.3 ng/L, 최소정량한계는 12.2ng/L이었으며, 신호-대-잡음 비로 계산한 최소검출한계는 7.0 ng/L, 최소정량한계는 22.1 ng/L이었다. 20ng/L부터 2,000 ng/L 농도 범위에서 정밀도는 4% 이내였으며, 우태아 혈청에 20-2,000 ng/L의 농도로 첨가하여 계산한 회수율은 92.3-101.3%로 양호한 결과를 얻었다. 본 연구에서 제시한 방법을 사용하여 납노출근로자의 혈장 및 혈청 중 납 분석이 가능하였으며 이를 통해 납의 만성노출에 대한 조사가 가능할것으로 판단된다.

keywords
lead, plasma, inductively coupled plasma-mass spectrometry, chronic bio-marker

Abstract

The human exposure of lead has usually detected the amount of lead in the whole blood, however,this method has a shortcoming to give the information on the short-term exposure to lead. In that sense, it is desirable to estimates the level of lead in plasma to draw the chronic bio-marker of lead exposure even though it is difficult to measure lead of several ng/L. An inductively coupled plasma-mass spectrometry (ICPMS)method was developed for determining lead in plasma as the chronic bio-marker of lead of workers. To minimize the contamination of lead from the environment, we constructed class 1,000 clean room and compared the amount of floating dust before and after the operation of the clean room. The limit of detection (LOD)and the limit of quantification (LOQ) of lead in fetal bovine serum were 4.3 ng/L and 12.2 ng/L by NIOSH method (statistical calculation method) and 7.0 ng/L and 22.1 ng/L by signal/noise ratio, respectively. The accuracy was in a range of 92.3-101.3%, and the precision of the assay was less than 4% in the samples spiked in the concentration of 20 ng/L and 2,000 ng/L. The method was simple, reproducible and sensitive enough to permit reliable analysis of lead to the ng/L level in plasma and/or serum. The method was also useful for the biological monitoring of chronic exposure to lead.

keywords
lead, plasma, inductively coupled plasma-mass spectrometry, chronic bio-marker


참고문헌

1

1. N.-S. Kim, J.-H. Kim, B.-K. Jang, H.-S. Kim, K.-D. Ahn and B.-K. Lee, J. Kor. Soc. Environ. Hyg., 17(1), 43-52 (2007).

2

2. KOSHA, Survey on work environment: lead, http://eip.kosha.or.kr/jsp/Main.jsp?On=OPEN, 2009.

3

3. Ministry of Environment, Lead Risk Assessment Report, Ministry of Environment, 2007.

4

4. Korea Industrial Safety Association, Safety Training sheet: Safety Measures for Lead Poisoning (KISAHealth-05), 2007.

5

5. KOSHA, Material Safety Data Sheet: Lead, http://msds.kosha.or.kr/web/kosha/msds02/Msds02SingleView.jsp, 30 Sep 2011.

6

6. ACGIH. Lead, elemental and inorganic, ACGIH, lead BEI1-15, 2001.

7

7. S. S. Choi and S. H. Lee, J. Kor. Soc. Environ. Administration, 8(4), 331-337 (2002).

8

8. K. S. Park and S. T. Kim, Anal. Sci. Tech., 10(4), 240-245 (1997).

9

9. M. Hernández-Avila, D. Smith, F. Meneses, L. H. Sanin and H. Hu, Environ. Health Perspectives, 106(8), 473-477 (1998).

10

10. G. A. K. Koyashiki, M. M. B. Paoliello, T. Matsuo, M. M. B. Oliveira, L. Mezzaroba, M. Fátima Carvalho, A. M. Sakuma, C. Turini, M. T. O. Vannuchi and C. S. D. Barbosa, Environ. Res., 110, 265-271 (2010).

11

11. A. Schütz, I. A. Bergdahl, A. Ekholm and S. Skerfving, Occup. Environ. Med., 53, 736-740 (1996).

12

12. I. A. Bergdahl, M. Vahter, S. A. Counter, A. Schütz, L. H. Buchanan, F. Ortega, G. Laurell and S. Skerfving, Environ. Res. Sec. A, 80, 25-33 (1999).

13

13. V. B. Rezende, J. H. Amaral, R. F. Gerlach, F. barbosa Jr. and J. E. Tanus-Santos, J. Trace Elements in Medicine and Biology, 24, 147-151 (2010).

14

14. M. F. Montenegro, F. Barbosa Jr, V. C. Sandrim, R. F. Gerlach and J. E. Tanus-Santos, Arch Toxicol., 80, 394-398 (2006).

15

15. R. Cornelis, B. Heinzow, R. F. M. Herber, J. Molin Christensen, O. M. Paulsen, E. Sabbioni, D. M. Templeton, Y. Thomassen, M. Vahter and O. Vesterberg, Pure & Appl. Chem., 67, 1575-1608 (1995).

16

16. C. D. Palmer, M. E. Lewis Jr., C. M. Geraghty, F. Barbosa Jr. and P. J. Parsons, Spectrochimica Acta part B, 61, 980-990 (2006).

17

17. J. A. Nunes, B. L. Batista, J. L. Rodrigues, N. M. Caldas, J. A. Neto and F. Barbosa Jr, J. Toxicol. Environ. Health Part A. 73(13-14), 878-887 (2010).

18

18. G. R. Almeida, C. F. Freitas Tavares, A. M. Souza, T. S. Sousa, C. A. R. Funayma, F. Barbosa Jr, J. E. Tnus-Santos and R. F. Gerlach, Sci. Total Environ., 408, 1551-1556 (2010).

19

19. B. L. Batista, D. Grotto, J. L. Rodrigues, V. C. Oliveira Souza and F. Barbosa Jr, Anal. Chimica Acta, 646, 23-39 (2009).

20

20. E. Bakowska, Agilent Technologies, Publication no. 5988-0533EN, 2001.

21

21. I. A. Bergdahl, A. Schütz, L. Gerhardsson, A. Jensen and S Skerfving, Scand. J. Work Environ. Health, 23, 359-363 (1997).

22

22. D. Smith, M. Hernandez-Avila, M. M. Téllez-Rojo, A. Mercado and H. Hu, Environ. Health Perspectives, 110(3), 263-268 (2002).

23

23. K. M. Cake, R. J. Bowins, C. Vaillancourt, C. L. Gordon, R. H. McNutt, R. Laporte, C. E. Webber and D. R. Chettle, American J. Indust. Medicine, 29, 440-445 (1996).

24

24. B. K. Lee, J. J. Kim, K. H. Woo and H. S. Kim, Health Care Technology Research and Development Annual Report, Department of Health and Human Services, 2002.

25

25. H.-S. Nam, K.-H. Nam, S. H. Jung, J. W. Lee, J. Y. Kang, S. K. Hong, T. S. Kim, T. S. Kang, H-J Yoon, K. H. Lee and G-S Rhee, Anal. Sci. Technol., 24(5), 345-351 (2011).

상단으로 이동

분석과학