- P-ISSN 1225-0163
- E-ISSN 2288-8985
이 논문은 센서 및 연료전지에 사용할 수 있는 <TEX>$Pt-Ru@TiO_2-H$</TEX> 나노구조체촉매의 제조 및 전기화학적 촉매의 특성에 대한 것이다. 이 <TEX>$Pt-Ru@TiO_2-H$</TEX> 나노구조체촉매는 주형제인 폴리스틸렌볼(PSB)을 제조하고, 이 주형제의 표면에 졸-겔 반응을 통해 <TEX>$TiO_2$</TEX>를 코팅한 후, <TEX>$Pt^{4+}$</TEX>와 <TEX>$Ru^{3+}$</TEX>의 환원에 의해 제조하였다. 제조된, <TEX>$Pt-Ru@TiO_2-H$</TEX> 나노구조체촉매는 전자투과현미경(TEM), X-선 회절(XRD)와 원소분석에 의해 특성평가 하였고, <TEX>$Pt-Ru@TiO_2-H$</TEX>의 전기화학적 촉매특성은 에탄올, 메탄올, 도파민, 아스크로브 산, 프로말린과 글루코오즈의 산화-환원 능력에 의해 평가 하였다. 이 <TEX>$Pt-Ru@TiO_2-H$</TEX> 나노구조체촉매는 바이오분자에 대해 전기화학적촉매 특성을 나타내어, 연료전지 전극 또는 비효소바이오센서에 사용 될 것으로 기대된다.
This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by TiO2-hollow sphere prepared for use in sensor applications or fuel cells. The TiO2-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto TiO2-hollow sphere (Pt-Ru@TiO2-H). The prepared Pt-Ru@TiO2-H nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD),and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol,methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the Pt-Ru@TiO2-H nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto TiO2-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.
G. S. Attard, P. N. Bartlett, N. R. B. Colemen, J. M. Elliott, J. R. Owen and J. H. Wang, Sci., 278, 838-840 (1997).
F. Leroux, B. E. Koene, L. F. Nazar, J. Electrochem. Soc., 143, L181-L183 (1996).
J. Wang and L. Agnes, Anal. Chem., 64, 456-459 (1992).
X. H. Xia, T. Iwasita, F. Ge and W. Vielstich, Electrochim. Acta, 41, 711-718 (1996).
Z. Liu, X. Y. Ling, X. Su, J. Y. Lee and L. M. Gan, J. Power Source, 149, 1-7 (2005).
S. J. Park, T. D. Chung and H. C. Kim, Anal. Chem., 75, 3046 -3049 (2003).
Y. Y. Song, D. Zhang, W. Gao and X. H. Xia, Chem. Eur. J. 11, 2177-2182 (2005).
A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh and N. Alonso-Vante, J. Phys. Chem. B, 111, 10329- 10333 (2007).
H. F. Cui, J. S. Ye, W. D. Zhang, C. M. Li, J. H. T. Luong and F. S. Sheu, Anal. Chim. Acta, 594, 175-183 (2007).
Y. Bai, Y. Sun and C. Sun, Biosens. Bioelectron., 24, 579-585 (2008).
J. Wang and D. F. Thomas, Chen, A. Anal. Chem., 80, 997-1004 (2008).
Y. Sun, H. Buck and T. E. Mallouk, Anal. Chem., 73, 1599-1604 (2001).
F. Xiao, F. Zhao, Y. Zhang, G. Guo and B. Zeng, J. Phys. Chem. C, 113, 846-849 (2009).
H. F. Cui, J. S. Ye, X. Liu, W. D. Zhang and F. S. Sheu, Nanotechnology, 17, 2334-2339 (2006).
L. Qian and X. Yang, J. Phys. Chem. B, 110, 16672- 16678 (2006).
X. M. Ren, P. Zelenary, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources, 86, 111-116 (2000).
Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc., 124, 468-473 (2002).
C. Bock, C. Paquet, M. Couillard, G. A. Gotton and B. R. MacDougall, J. Am. Chem. Soc., 126, 8028-8037 (2004).
K. Park, Y. Sung, S. Han, Y. Yun and T. Hyeon, J. Phys. Chem. B, 108, 939-944 (2004).
Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004).
Z. Liu, L. M. Gan, L. Hong, W. Chen and J. Y. Lee, J. Power Source, 139, 73-78 (2005).
G. Chai, S. B. Yoon, S. Kang, J.-H. Choi, Y.-E. Sung, Y.-S. Ahn, H.-S. Kim and J.-S. Yu, Electrochim. Acta, 50, 823-826 (2004).
D. F. Silva, A. O. Neto, E. S. Pino, M. Linardi and E. V. Spinace, J. Power Source, 170, 303-307 (2007).
W. Chen, J. Y. Lee and Z. Liu, Mater. Lett., 58, 3166- 3169 (2004).
Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004).
K.-D. Seo, S.-D. Oh, S.-H. Choi, S.-H. Kim, H. G. Park and Y. P. Zhang, Colloids Surf. A, 313, 393-397 (2008).
H.-B. Bae, J.-H. Ryu, B.-S. Byun, S.-H. Choi, S.-H. Kim and C.-G. Hwang, Adv. Mater. Res., 47-50, 1478- 1481 (2008).
H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 161, 893-900 (2006).
N. Zheng and G. D. Stuck, A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 128, 14278-12480 (2006).
H. Einaga and M. Harada, Langmuir, 21, 2578-2584 (2005).
J. Tian, G. Sun, L. Jiang, S. Yan, Z. Mao and Q. Xin, Electrochem. Commun., 8, 1439-1444 (2006).
J. H. Pan, X. W. Zhang, A. J. Du, D. D. Sun and J. O. Leckie, J. Am. Chem. Soc., 130, 11256-11257 (2008).
H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Adv. Mater., 20, 195-199 (2008).
S. S. K. Kamal, P. K. Sahoo, M. Premkumar, N. V. R. Rao, T. J. Kumar, B. Sreedhar, A. K. Singh, S. Ram and K. C. Sekhar, Chem. J. Alloys Compd., 474, 214-218 (2009).
J. G. Yu, W. Liu and H. G. Yu, Cryst. Growth Des., 8, 930-934 (2004).
Y. Wang, F. B. Su, J. Y. Lee and X. S. Zhao, Chem. Mater., 18, 1347-1353 (2009).
C. H. Chang, P. S. Son, J. A. Yoon and S. H. Choi, J. Nanomater., 2010, 1-13 (2010).
J. H. Chae, S. H. Jung and S. H. Choi, Current Applied Physics, 10, S97-105 (2010).
F. A. Cotton; Wildinson, G. Advanced Inorganic Chemistry; John Wiley & Sons Inc.: New York, 1988.
B. Yang, Q. Lu, Y. Wang, L. Zhiang, J. Lu and P. Liu, Chem. Mater., 15, 3552-3579 (2003).
D. R. Rolison, P. L. Hagans, K. E. Swider and J. W. Long, Langmuir, 15, 774-779 (1999).
S. Song, Q. Gao, K. Xia and L. Gao, Electroanalysis, 20, 1159-1166 (2008).