Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Electrocatalytic activity of the bimetallic Pt-Ru catalysts doped TiO2-hollow sphere nanocomposites

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2013, v.26 no.1, pp.42-50
https://doi.org/10.5806/AST.2013.26.1.042



  • Downloaded
  • Viewed

Abstract

This paper describes the electrocatalytic activity for the oxidation of small biomolecules on the surface of Pt-Ru nanoparticles supported by TiO2-hollow sphere prepared for use in sensor applications or fuel cells. The TiO2-hollow sphere supports were first prepared by sol-gel reaction of titanium tetraisopropoxide with poly(styrene-co-vinylphenylboronic acid), PSB used as a template. Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto TiO2-hollow sphere (Pt-Ru@TiO2-H). The prepared Pt-Ru@TiO2-H nanocomposites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD),and elemental analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via ethanol,methanol, dopamine, ascorbic acid, formalin, and glucose oxidation. The cyclic voltammograms (CV) obtained during the oxidation studies revealed that the Pt-Ru@TiO2-H nanocomposites showed high electrocatalytic activity for the oxidation of biomolecules. As a result, the prepared Pt-Ru catalysts doped onto TiO2-H sphere nanocomposites supports can be used for non-enzymatic biosensor or fuel cell anode electrode.

keywords
Electrocatalytic oxidation, Pt-Ru nanocomposites, <TEX>$TiO_2$</TEX>-Hollow nanocomposites, Poly(styrene-co-vinylphenylboronic acid)


Reference

1

 G. S. Attard, P. N. Bartlett, N. R. B. Colemen, J. M. Elliott, J. R. Owen and J. H. Wang, Sci., 278, 838-840 (1997).

2

 F. Leroux, B. E. Koene, L. F. Nazar, J. Electrochem. Soc., 143, L181-L183 (1996).

3

 J. Wang and L. Agnes, Anal. Chem., 64, 456-459 (1992).

4

 X. H. Xia, T. Iwasita, F. Ge and W. Vielstich, Electrochim. Acta, 41, 711-718 (1996).

5

 Z. Liu, X. Y. Ling, X. Su, J. Y. Lee and L. M. Gan, J. Power Source, 149, 1-7 (2005).

6

 S. J. Park, T. D. Chung and H. C. Kim, Anal. Chem., 75, 3046 -3049 (2003).

7

 Y. Y. Song, D. Zhang, W. Gao and X. H. Xia, Chem. Eur. J. 11, 2177-2182 (2005).

8

 A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh and N. Alonso-Vante, J. Phys. Chem. B, 111, 10329- 10333 (2007).

9

 H. F. Cui, J. S. Ye, W. D. Zhang, C. M. Li, J. H. T. Luong and F. S. Sheu, Anal. Chim. Acta, 594, 175-183 (2007).

10

 Y. Bai, Y. Sun and C. Sun, Biosens. Bioelectron., 24, 579-585 (2008).

11

 J. Wang and D. F. Thomas, Chen, A. Anal. Chem., 80, 997-1004 (2008).

12

 Y. Sun, H. Buck and T. E. Mallouk, Anal. Chem., 73, 1599-1604 (2001).

13

 F. Xiao, F. Zhao, Y. Zhang, G. Guo and B. Zeng, J. Phys. Chem. C, 113, 846-849 (2009).

14

 H. F. Cui, J. S. Ye, X. Liu, W. D. Zhang and F. S. Sheu, Nanotechnology, 17, 2334-2339 (2006).

15

 L. Qian and X. Yang, J. Phys. Chem. B, 110, 16672- 16678 (2006).

16

 X. M. Ren, P. Zelenary, S. Thomas, J. Davey and S. Gottesfeld, J. Power Sources, 86, 111-116 (2000).

17

 Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc., 124, 468-473 (2002).

18

 C. Bock, C. Paquet, M. Couillard, G. A. Gotton and B. R. MacDougall, J. Am. Chem. Soc., 126, 8028-8037 (2004).

19

 K. Park, Y. Sung, S. Han, Y. Yun and T. Hyeon, J. Phys. Chem. B, 108, 939-944 (2004).

20

 Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004).

21

 Z. Liu, L. M. Gan, L. Hong, W. Chen and J. Y. Lee, J. Power Source, 139, 73-78 (2005).

22

 G. Chai, S. B. Yoon, S. Kang, J.-H. Choi, Y.-E. Sung, Y.-S. Ahn, H.-S. Kim and J.-S. Yu, Electrochim. Acta, 50, 823-826 (2004).

23

 D. F. Silva, A. O. Neto, E. S. Pino, M. Linardi and E. V. Spinace, J. Power Source, 170, 303-307 (2007).

24

 W. Chen, J. Y. Lee and Z. Liu, Mater. Lett., 58, 3166- 3169 (2004).

25

 Z. Liu, J. Y. Lee, W. Chen, M. Han and L. M. Gan, Langmuir, 20, 181-187 (2004).

26

 K.-D. Seo, S.-D. Oh, S.-H. Choi, S.-H. Kim, H. G. Park and Y. P. Zhang, Colloids Surf. A, 313, 393-397 (2008).

27

 H.-B. Bae, J.-H. Ryu, B.-S. Byun, S.-H. Choi, S.-H. Kim and C.-G. Hwang, Adv. Mater. Res., 47-50, 1478- 1481 (2008).

28

 H. Chhina, S. Campbell and O. Kesler, J. Power Sources, 161, 893-900 (2006).

29

 N. Zheng and G. D. Stuck, A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 128, 14278-12480 (2006).

30

 H. Einaga and M. Harada, Langmuir, 21, 2578-2584 (2005).

31

 J. Tian, G. Sun, L. Jiang, S. Yan, Z. Mao and Q. Xin, Electrochem. Commun., 8, 1439-1444 (2006).

32

 J. H. Pan, X. W. Zhang, A. J. Du, D. D. Sun and J. O. Leckie, J. Am. Chem. Soc., 130, 11256-11257 (2008).

33

 H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N. G. Park, Adv. Mater., 20, 195-199 (2008).

34

 S. S. K. Kamal, P. K. Sahoo, M. Premkumar, N. V. R. Rao, T. J. Kumar, B. Sreedhar, A. K. Singh, S. Ram and K. C. Sekhar, Chem. J. Alloys Compd., 474, 214-218 (2009).

35

 J. G. Yu, W. Liu and H. G. Yu, Cryst. Growth Des., 8, 930-934 (2004).

36

 Y. Wang, F. B. Su, J. Y. Lee and X. S. Zhao, Chem. Mater., 18, 1347-1353 (2009).

37

 C. H. Chang, P. S. Son, J. A. Yoon and S. H. Choi, J. Nanomater., 2010, 1-13 (2010).

38

 J. H. Chae, S. H. Jung and S. H. Choi, Current Applied Physics, 10, S97-105 (2010).

39

 F. A. Cotton; Wildinson, G. Advanced Inorganic Chemistry; John Wiley & Sons Inc.: New York, 1988.

40

 B. Yang, Q. Lu, Y. Wang, L. Zhiang, J. Lu and P. Liu, Chem. Mater., 15, 3552-3579 (2003).

41

 D. R. Rolison, P. L. Hagans, K. E. Swider and J. W. Long, Langmuir, 15, 774-779 (1999).

42

 S. Song, Q. Gao, K. Xia and L. Gao, Electroanalysis, 20, 1159-1166 (2008).

상단으로 이동

Analytical Science and Technology