Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Theoretical study on the structures and the electron affinities of cyclic perfluoroalkanes (c-PFA)

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2013, v.26 no.1, pp.51-60
https://doi.org/10.5806/AST.2013.26.1.051



  • Downloaded
  • Viewed

Abstract

The geometrical parameters, vibrational frequencies, and adiabatic electron affinities (AEAs) for c-CnF2n (n=8, 9) and C10F18 (perfluorodecalin) have been investigated using various quantum mechanical techniques. The possible structures for the neutrals and anions of c-PFA are fully optimized and electron affinities are predicted using energy difference between the neutral and anion. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the electron affinities. The electron affinities are predicted to be 1.18 eV for c-C8F16 (ortho), 1.37 eV for c-C9F18,and 1.38 eV for C10F18 (perfluorodecalin) at the MP2 level of theory after ZPVE correction.

keywords
perfluoroalkanes, perfluorodecalin, electron affinities, DFT


Reference

1

 L. C. Clark and F. Gollan, Sci., 152, 1755-1756 (1966).

2

 K. C. Lowe, J. Mater. Chem., 16, 4189-4196 (2006).

3

 Jean G. Riess, Chem. Rev., 101(9), 2797-2919 (2001).

4

 K. C. Lowe, J. Fluorine Chem., 109, 59-65 (2001).

5

 K. C. Lowe, Tissue Eng., 9(3), 389-399 (2003).

6

 K. C. Lowe, J. Fluorine Chem., 118, 19-26 (2002).

7

 P. F. F. Amaral, M. G. Freire, M. H. M. Rocha-Leão, I. M. Marrucho, J. A. P. Coutinho and M. A. Z. Coelho, Biotechnol. Bioeng., 99(3), 588-598 (2008).

8

 M. K. Bakulin, V. I. Zakharov and E. V. Chebotarev, Appl. Biochem. Microbiol., 40(3), 266-271 (2004).

9

 K. P. Shine, L. K. Gohar, M. D. Hurley, G. Marston, D. Martin, P. G. Simmonds, T. J. Wallington and M. Watkins, Atmos. Environ., 39, 1759-1763 (2005).

10

 A. R. Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Sci., 259, 194-199 (1993).

11

 R. G. Harrison and T. G. Richmond, J. Am. Chem. Soc., 115(12), 5303-5304 (1993).

12

 J. L. kiplinger, T. G. Richmond and C. E. Osterberg, Chem. Rev., 94(2), 373-431 (1994).

13

 B. K. Bennett, R. G. Harrison and T. G. Richmond, J. Am. Chem. Soc., 116(24), 11165-11166 (1994).

14

 R. A. Morris, T. M. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon and G. Reid, J. Geophys. Res., 10(D1), 1287-1294 (1995).

15

 G. Sanford, Tetrahedron, 59, 437-454 (2003).

16

 J. F. Liebman, J. Fluorine Chem., 3, 27-33 (1973).

17

 T. G. Richmond, Angew. Chem. Int. Ed., 39(18), 3241- 3244 (2000).

18

 A. Paul, C. Wannere and H. F. Schaefer, J. Phys. Chem. A, 108(43), 9428-9434 (2004).

19

 T. M. Miller, R. A. Morris, E. S. Miller, A. A. Viggiano and J. F. Paulson, Int. J. Mass. Spectrom. Ion Processes, 135, 195-205 (1994).

20

 K. Hiraoka, T. Mizono, D. Eguchi and K. Takao, J. Chem. Phys., 116(17), 7574-7582 (2002).

21

 T. M. Miller, J. F. Friedman and A. A. Viggiano, J. Chem. Phys., 120(15), 7024-7028 (2004).

22

 G. A. Gallup, Chem. Phys. Lett., 399, 206-209 (2004)

23

 E. P. Grimsrud, S. Chowdhury and P. J. Kebarle, Chem. Phys., 83(3), 1059-1068 (1985).

24

 A. Paul, C. S. Wannere, V. Kasalova, P. V. R. Schleyer and H. F. Schaefer III, J. Am. Chem. Soc., 127(44), 15457-15469 (2005).

25

(a) A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

26

C. Lee, W. Yang and R. G. Parr, Phys. Rev., B37, 785 (1988).

27

 T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).

28

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannen berg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A, Gaussian, Inc., Wallingford CT, 2009.

29

 I. V. Beregovaya, L. N. Shchegoleva and V. I. Borovkov, J. Phys. Chem. A., 113(8), 1555-1558 (2009).

30

 V. M. Senyavin, I. V. Kochikov and G. M. Kuramshina, J. Mol. Struct., 410-411, 463-466 (1997).

상단으로 이동

Analytical Science and Technology