Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Large scale splitter-less FFD-SPLITT fractionation: effect of flow rate and channel thickness on fractionation efficiency

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2014, v.27 no.1, pp.34-40
    https://doi.org/10.5806/AST.2014.27.1.34






    • Downloaded
    • Viewed

    Abstract

    SPLITT fractionation (SF) allows continuous (and thus a preparative scale) separation of micronsizedparticles into two size fractions (‘fraction-a’ and ‘fraction-b’). SF is usually carried out in a thin rectangularchannel with two inlets and two outlets, which is equipped with flow stream splitters at the inlet and the outletof the channel, respectively. A new large scale splitter-less gravitational SF (GSF) system had been assembled,which was designed to eliminate the flow stream splitters and thus is operated by the full feed depletion (FFD)mode (FFD-GSF). In the FFD mode, there is only one inlet through which the sample is fed. There is nocarrier liquid fed into the channel, and thus prevents the sample dilution. The effects of the sample-feedingflow rate, the channel thickness on the fractionation efficiency (FE, number % of particles that have the sizepredicted by theory) of FFD-GSF was investigated using industrial polyurethane (PU) latex beads. The carrierliquid was water containing 0.1% FL-70 (particle dispersing agent) and 0.02% sodium azide (used as bactericide). The sample loading rate was varied from about 4 to 7 L/hr with the sample concentration fixed at 0.01%. The GSF channel thickness was varied from 900 to 1300 μm. Particles exiting the GSF channel were collectedand monitored by optical microscopy (OM). Sample recovery was monitored by collecting the fractionatedparticles on a 0.45 μm membrane filter. It was found that FE of fraction-a was increased as the channel thicknessincreases, and FE of fraction-b was increased as the flow rate was increased. In all cases, the sample recoveryhas higher than 95%. It seems the new splitter-less FFD GSF system could become a useful tool for largescale separations of various types of micron-sized particles.

    keywords
    SPLITT, throughput, fractionation efficiency, sample recovery, separation


    Reference

    1

    1. J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768(1985).

    2

    2. S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987).

    3

    3. S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989).

    4

    4. Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci. Technol., 9(3-4), 105-118 (1991).

    5

    5. J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504(1992).

    6

    6. P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992).

    7

    7. C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997).

    8

    8. C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992).

    9

    9. S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56 (1991).

    10

    10. J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994).

    11

    11. C. B. Fuh, E. M. Trujillo and J. C. Giddings, Sep. Sci. Technol., 30(20), 3861-3876 (1995).

    12

    12. Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997).

    13

    13. Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61(1999).

    14

    14. R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim. Cosmochim. Acta, 58(2), 879-893 (1994).

    15

    15. C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997).

    16

    16. F. Dondi, C. Contado, G. Blo and S. Garçia Martin, Chromatographia, 48(9-10), 643-654 (1998).

    17

    17. M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002).

    18

    18. M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005).

    19

    19. S. Lee, T. W. Lee, S. K. Cho, S. T. Kim, D. Y. Kang, H. Kwen, S. K. Lee and C. H. Eum, Microchem. J., 95(1), 11-19 (2010).

    20

    20. C. B. Fuh, M. N. Myers and J. C. Giddings, Ind. Eng. Chem. Res., 33(2), 355-362 (1994).

    21

    21. C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362(2003).

    22

    22. H. J. Choi, W. J. Kim, C. H. Eum and S. Lee, Anal. Sci. Technol., 26(1), 34-41 (2013).

    23

    23. S. Lee, J. Y. Lee, T. W. Lee, E. C. Jung and S. K. Cho, Bull. Korean Chem. Soc., 32(12), 4291-4296 (2011).

    24

    24. A. De Momi and J. R. Lead, Environ. Sci. Technol., 40(21), 6738-6743 (2006).

    25

    25. C. Bor Fuh and S. Y. Chen, J. Chromatogra. A, 813(2), 313-324 (1998).

    26

    26. G. Blo, C. Contado, D. Grandi, F. Fagioli and F. Dondi, Anal. Chim. Acta, 470(2), 253-262 (2002).

    27

    27. H. Tsai, Y. S. Fang, and C. B. Fuh, BMRT., 4:6, 1-7(2006).

    상단으로 이동

    Analytical Science and Technology