Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Aptamer-based optical switch for biosensors

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2014, v.27 no.3, pp.121-139
    https://doi.org/10.5806/AST.2014.27.3.121

    (University of Texas at Austin)

    • Downloaded
    • Viewed

    Abstract

    In this review, we will discuss aptamer technologies including in vitro selection, signal transductionmechanisms, and designing aptamers and aptazyme for label-free biosensors and catalysts. Dye-displacement,a typical label-less method, is described here which allows avoiding relatively complex labeling steps andextending this application to any aptamers without specific conformational changes, in a more simple, sensitiveand cost effective way. We will also describe most recent and advanced technologies of signaling aptamerand aptazyme for the various analytical and clinical applications. Quantum dot biosensor (QDB) is explainedin detail covering designing and adaptations for multiplexed protein detection. Application to aptamer arrayutilizing self-assembled signaling aptamer DNA tile and the novel methods that can directly select smart aptameror aptazyme experimentally and computationally will also be finally discussed, respectively.

    keywords
    optical, sensor, aptamer, fluorescence


    Reference

    1

    1. D. Proske, M. Blank, R. Buhmann, and A. Resch, Appl. Microbiol. Biotechnol., 69(4), 367-374 (2005).

    2

    2. D. H. Bunka and P. G. Stockley, Nat. Rev. Microbiol., 4(8), 588-596 (2006).

    3

    3. A. C. Yan, K. M. Bell, M. M. Breeden and A. D. Ellington, Front. Biosci., 10, 1802-1827 (2005).

    4

    4. J. F. Lee, G. M. Stovall and A. D. Ellington, Curr. Opin. Chem. Biol., 10(3), 282-289 (2006).

    5

    5. X. Fang, A. Sen, M. Vicens and W. Tan, Chembiochem, 4(9), 829-834 (2003).

    6

    6. R. Nutiu and Y. Li, Methods, 37(1), 16-25 (2005).

    7

    7. R. L. Nutiu, Y., Chem. Eur. J., 10(8), 1868-1876 (2004).

    8

    8. Z. Tang, P. Mallikaratchy, R. Yang, Y. Kim, Z. Zhu, H. Wang and W. Tan, J Am Chem Soc, 130(34), 11268-11269 (2008).

    9

    9. J. J. Li, X. Fang and W. Tan, Biochem. Biophys. Res. Commun., 292(1), 31-40 (2002).

    10

    10. M. N. Stojanovic, P. de Prada and D. W. Landry, J. Am. Chem. Soc., 122(46), 11547-11548 (2000).

    11

    11. R. Nutiu and Y. Li, J. Am. Chem. Soc., 125(16), 4771-4778 (2003).

    12

    12. E. J. Merino and K. M. Weeks, J. Am. Chem. Soc., 125(41), 12370-12371 (2003).

    13

    13. C. J. Yang, S. Jockusch, M. Vicens, N. J. Turro and W. Tan, Proc Natl Acad Sci USA, 102(48), 17278-17283(2005).

    14

    14. E. Heyduk and T. Heyduk, Anal Chem, 77(4), 1147-1156 (2005).

    15

    15. E. Katilius, Z. Katiliene and N. W. Woodbury, Anal. Chem., 78(18), 6484-6489 (2006).

    16

    16. R. D. Jenison, S. C. Gill, A. Pardi and B. Polisky, Science, 263(5152), 1425-1429 (1994).

    17

    17. S. Seetharaman, M. Zivarts, N. Sudarsan and R. R. Breaker, Nat. Biotechnol., 19(4), 336-341 (2001).

    18

    18. R. R. Breaker and G. F. Joyce, Trends Biotechnol., 12(7), 268-275 (1994).

    19

    19. R. R. Breaker, Chem. Rev., 97(2), 371-390 (1997).

    20

    20. A. Ferguson, R. M. Boomer, M. Kurz, S. C. Keene, J. L. Diener, A. D. Keefe, C. Wilson and S. T. Cload, Nucleic Acids Res., 32(5), 1756-1766 (2004).

    21

    21. R. Nutiu and Y. Li, Angew. Chem. Int. Ed. Engl., 44(34), 5464-5467 (2005).

    22

    22. J. Bunkenborg, N. I. Gadjev, T. Deligeorgiev and J. P. Jacobsen, Bioconjug. Chem., 11(6), 861-867 (2000).

    23

    23. A. N. Glazer and H. S. Rye, Nature, 359(6398), 859-861 (1992).

    24

    24. S. Laib and S. Seeger, J. Fluoresc., 14(2), 187-191 (2004).

    25

    25. Y. Liu and B. Danielsson, Anal. Chem., 77(8), 2450-2454 (2005).

    26

    26. M. N. Stojanovic and D. W. Landry, J. Am. Chem. Soc., 124(33), 9678-9679 (2002).

    27

    27. M. N. Stojanovic and D. M. Kolpashchikov, J. Am. Chem. Soc., 126(30), 9266-9670 (2004).

    28

    28. J. R. Babendure, S. R. Adams and R. Y. Tsien, J. Am. Chem. Soc., 125(48), 14716-14717 (2003).

    29

    29. D. Grate and C. Wilson, Proc. Natl. Acad. Sci. U S A, 96(11), 6131-6136 (1999).

    30

    30. H. A. Ho and M. Leclerc, J. Am. Chem. Soc., 126(5), 1384-1387 (2004).

    31

    31. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, Nat. Mater., 2(9), 630-638(2003).

    32

    32. P. S. Nelson, Ann. N Y Acad. Sci., 975, 232-246 (2002).

    33

    33. S. E. Lupold, B. J. Hicke, Y. Lin and D. S. Coffey, Cancer Res., 62(14), 4029-4033 (2002).

    34

    34. O. C. Farokhzad, S. Jon, A. Khademhosseini, T. N. Tran, D. A. Lavan and R. Langer, Cancer Res., 64(21), 7668-7672 (2004).

    35

    35. T. C. Chu, F. Shieh, L. A. Lavery, M. Levy, R. Richards-Kortum, B. A. Korgel and A. D. Ellington, Biosens. Bioelectron., 21(10), 1859-1866 (2006).

    36

    36. J. K. Herr, J. E. Smith, C. D. Medley, D. Shangguan and W. Tan, Anal. Chem., 78(9), 2918-2924 (2006).

    37

    37. J. Srinivasan, S. T. Cload, N. Hamaguchi, J. Kurz, S. Keene, M. Kurz, R. M. Boomer, J. Blanchard, D. Epstein, C. Wilson and J. L. Diener, Chem. Biol., 11(4), 499-508(2004).

    38

    38. N. H. Elowe, R. Nutiu, A. Allali-Hassani, J. D. Cechetto, D. W. Hughes, Y. Li and E. D. Brown, Angew. Chem. Int. Ed. Engl., 45(34), 5648-5652 (2006).

    39

    39. J. Barletta, Mol. Aspects. Med., 27(2-3), 224-253 (2006).

    40

    40. M. J. Espy, J. R. Uhl, L. M. Sloan, S. P. Buckwalter, M. F. Jones, E. A. Vetter, J. D. Yao, N. L. Wengenack, J. E. Rosenblatt, F. R. Cockerill, 3rd and T. F. Smith, Clin. Microbiol. Rev., 19(1), 165-256 (2006).

    41

    41. P. M. Lizardi, X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas and D. C. Ward, Nat. Genet., 19(3), 225-232(1998).

    42

    42. H. Zhou, K. Bouwman, M. Schotanus, C. Verweij, J. A. Marrero, D. Dillon, J. Costa, P. Lizardi and B. B. Haab, Genome Biol., 5(4), R28 (2004).

    43

    43. G. Nallur, C. Luo, L. Fang, S. Cooley, V. Dave, J. Lambert, K. Kukanskis, S. Kingsmore, R. Lasken and B. Schweitzer, Nucleic Acids Res., 29(23), E118 (2001).

    44

    44. G. A. Blab, T. Schmidt and M. Nilsson, Anal. Chem., 76(2), 495-498 (2004).

    45

    45. M. Nilsson, M. Gullberg, F. Dahl, K. Szuhai and A. K. Raap, Nucleic Acids Res., 30(14), e66 (2002).

    46

    46. B. Schweitzer, S. Wiltshire, J. Lambert, S. O'Malley, K. Kukanskis, Z. Zhu, S. F. Kingsmore, P. M. Lizardi and D. C. Ward, Proc. Natl. Acad. Sci. USA, 97(18), 10113-10119 (2000).

    47

    47. B. Schweitzer, S. Roberts, B. Grimwade, W. Shao, M. Wang, Q. Fu, Q. Shu, I. Laroche, Z. Zhou, V. T. Tchernev, J. Christiansen, M. Velleca and S. F. Kingsmore, Nat. Biotechnol., 20(4), 359-365 (2002).

    48

    48. D. A. Di Giusto, W. A. Wlassoff, J. J. Gooding, B. A. Messerle and G. C. King, Nucleic Acids Res., 33(6), e64(2005).

    49

    49. J. J. Harvey, S. P. Lee, E. K. Chan, J. H. Kim, E. S. Hwang, C. Y. Cha, J. R. Knutson and M. K. Han, Anal. Biochem., 333(2), 246-255 (2004).

    50

    50. I. V. Smolina, V. V. Demidov, C. R. Cantor and N. E. Broude, Anal. Biochem., 335(2), 326-329 (2004).

    51

    51. M. P. Robertson and A. D. Ellington, Nat. Biotechnol., 17(1), 62-66 (1999).

    52

    52. M. Levy and A. D. Ellington, Chem. Biol., 9(4), 417-426 (2002).

    53

    53. M. Levy and A. D. Ellington, J. Mol. Evol., 54(2), 180-190 (2002).

    54

    54. M. Levy and A. D. Ellington, Bioorg. Med. Chem., 9(10), 2581-2587 (2001).

    55

    55. Y. Xu and E. T. Kool, Nucleic Acids Res, 27(3), 875-881 (1999).

    56

    56. O. Soderberg, M. Gullberg, M. Jarvius, K. Ridderstrale, K. J. Leuchowius, J. Jarvius, K. Wester, P. Hydbring, F. Bahram, L. G. Larsson, and U. Landegren, Nat. Methods, 3(12), 995-1000 (2006).

    57

    57. S. Fredriksson, M. Gullberg, J. Jarvius, C. Olsson, K. Pietras, S. M. Gustafsdottir, A. Ostman and U. Landegren, Nat Biotechnol, 20(5), 473-477 (2002).

    58

    58. L. Yang, C. W. Fung, E. J. Cho and A. D. Ellington, Anal. Chem., 79(9), 3320-3329 (2007).

    59

    59. T. S. Bayer and C. D. Smolke, Nat. Biotechnol., 23(3), 337-343 (2005).

    60

    60. J. Liu and Y. Lu, Angew. Chem. Int. Ed. Engl., 45(1), 90-94 (2005).

    61

    61. L. Yang and A. D. Ellington, Anal. Biochem., 380(2), 164-173 (2008).

    62

    62. R. Nutiu, J. M. Yu and Y. Li, Chembiochem, 5(8), 1139-1144 (2004).

    63

    63. Q. Deng, C. J. Watson and R. T. Kennedy, J. Chromatogr. A, 1005(1-2), 123-130 (2003).

    64

    64. T. S. Romig, C. Bell and D. W. Drolet, J. Chromatogr. B Biomed. Sci. Appl., 731(2), 275-284 (1999).

    65

    65. T. G. McCauley, N. Hamaguchi and M. Stanton, Anal. Biochem., 319(2), 244-250 (2003).

    66

    66. M. Lee and D. R. Walt, Anal Biochem, 282(1), 142-146(2000).

    67

    67. R. A. Potyrailo, R. C. Conrad, A. D. Ellington and G. M. Hieftje, Anal. Chem., 70(16), 3419-3425 (1998).

    68

    68. G. Ramsay, Nat. Biotechnol., 16(1), 40-44 (1998).

    69

    69. R. F. Macaya, J. A. Waldron, B. A. Beutel, H. Gao, M. E. Joesten, M. Yang, R. Patel, A. H. Bertelsen and A. F. Cook, Biochemistry, 34(13), 4478-4492 (1995).

    70

    70. S. Su, R. Nutiu, C. D. Filipe, Y. Li and R. Pelton, Langmuir, 23(3), 1300-1302 (2007).

    71

    71. L. M. Ellerby, C. R. Nishida, F. Nishida, S. A. Yamanaka, B. Dunn, J. S. Valentine, and J. I. Zink, Science, 255(5048), 1113-1115 (1992).

    72

    72. I. Gill and A. Ballesteros, Trends Biotechnol., 18(7), 282-296 (2000).

    73

    73. C. Lin, E. Katilius, Y. Liu, J. Zhang and H. Yan, Angew. Chem. Int. Ed. Engl., 45(32), 5296-5301 (2006).

    74

    74. C. Lin, Y. Liu and H. Yan, Nano Lett., 7(2), 507-512(2007).

    75

    75. N. C. Seeman, Nature, 421(6921), 427-431 (2003).

    76

    76. C. Lin, Y. Liu, S. Rinker and H. Yan, Chemphyschem, 7(8), 1641-1647 (2006).

    77

    77. U. Feldkamp and C. M. Niemeyer, Angew. Chem. Int. Ed. Engl., 45(12), 1856-1876 (2006).

    78

    78. Y. He, Y. Tian, Y. Chen, Z. Deng, A. E. Ribbe and C. Mao, Angew. Chem. Int. Ed. Engl., 44(41), 6694-6696(2005).

    79

    79. Y. He, Y. Chen, H. Liu, A. E. Ribbe and C. Mao, J. Am. Chem. Soc., 127(35), 12202-12203 (2005).

    80

    80. E. Winfree, F. Liu, L. A. Wenzler and N. C. Seeman, Nature, 394(6693), 539-544 (1998).

    81

    81. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif and T. H. LaBean, Science, 301(5641), 1882-1884 (2003).

    82

    82. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Relf and N. C. Seeman, J. Am. Chem. Soc., 407(9), 1848-1860 (2000).

    83

    83. L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas and J. J. Toole, Nature, 355(6360), 564-566 (1992).

    84

    84. N. Hamaguchi, A. Ellington and M. Stanton, Anal. Biochem., 294(2), 126-131 (2001).

    85

    85. S. D. Seiwert, T. Stines Nahreini, S. Aigner, N. G. Ahn and O. C. Uhlenbeck, Chem. Biol., 7(11), 833-843 (2000).

    86

    86. G. A. Soukup and R. R. Breaker, Proc. Natl. Acad. Sci. U S A, 96(7), 3584-3589 (1999).

    87

    87. A. Roth and R. R. Breaker, Methods Mol. Biol., 252, 145-164 (2004).

    88

    88. J. Tang and R. R. Breaker, Chem. Biol., 4(6), 453-459(1997).

    89

    89. B. Hall, J. R. Hesselberth and A. D. Ellington, Biosens. Bioelectron., 22(9-10), 1939-1947 (2007).

    90

    90. M. P. Robertson, S. M. Knudsen and A. D. Ellington, RNA, 10(1), 114-127 (2004).

    91

    91. M. Zuker, Curr. Opin. Struct. Biol., 10(3), 303-310 (2000).

    상단으로 이동

    Analytical Science and Technology