- P-ISSN 1225-0163
- E-ISSN 2288-8985
불화수소는 유리의 식각, 금속의 녹 제거 등 산업계에서 많이 사용되는 대표적인 무기산이며 노출 시 눈, 코, 목안을 강하게 자극하고, 흡입 시 폐렴, 폐수종 기관지염을 일으키는 대표적인 유독물질에해당하는 화학물질로 구분되어 있다. 현행 폐기물공정시험기준에는 불소화합물에 대한 함량분석방법이마련되어 있지 않아 최근 발생된 불화수소 누출사고로 발생된 불산에 오염된 농작물, 수목 등 가연성 폐기물의 신속하고 안전한 처리방법 마련에 어려움을 겪었다. 본 연구에서는 불화수소 누출사고로 발생된가연성 폐기물(농작물, 수목 등) 중 불소 및 불소화합물의 함량분석방법 마련을 통해 폐기물의 불산 오염여부를 판단하고 적절한 폐기물 처리방법을 제시하고, 향후 이 방법을 폐기물 관리법상에 지정폐기물에 함유된 유해물질로 불소 및 불소화합물에 대한 항목 추가 시 폐기물공정시험기준으로 활용하고자 한다
Hydrofluoric acid (HF), a typical inorganic acid, has been used in the industry for its various usageand classified as the toxic compound, because it can cause the pneumonia and pulmonary edema when it wasexposed to respiratory organs. The official environmental analytical method for fluorine and its compound inwaste has not been developed. For this reason, we have faced some problem to treat the contaminated wastesby the HF leakage from industrial process. In this study, prepared for analytical method for combustible waste(crop, trees, etc.) generated from HF leaking accident and to be applied as the official analytical method forfluorine contaminated waste when the fluorine and its compound will be regulated as a hazardous materialby the waste management law later.
1. Ministry of Environment, ‘Development of environmental technology for recycling multicomponent waste acid including hydrofluoric acid and acetic acid’, 2008.
2. National Institute of Environmental Research, ‘Hydrogen fluoride’, 2009.
3. Division of Chemical Health and Safety of the American Chemical Society, ‘Hexafluorine decontamination of 70% hydrofluoric acid (HF) vapor facial exposure :Case report’, 2011.
4. J. Asaria, O. C. Kobusingye, B. A. Khingi, R. Balikuddembe, M. Gomez and M. Beveridge, ‘Acid burns from personal assault in Uganda’, Burns 30, 78-81 (2004).
5. Martin W. Dnser, Markus Öhlbauer, Josef Rieder, Isabella Zimmermann, Helmut Ruatti, Anton H. Schwabegger, Florian Bodrogi, Georg M. Huemer, Barbara E. Friesenecker, Andreas J. Mayr, Philipp Lirk, ‘Critical care management of major hydrofluoric acid burns: a case report, review of the literature, and recommendations for therapy’, Burns, 30, 391-398 (2004).
6. R. L. Sheridan, C. M. Ryan, W. C. Quinby Jr, J. Blair, R. G. Tompkins and J. F. Burke, ‘Emergency management of major hydrofluoric acid exposures’, Burns, 21(1), 62-64 (1995).
7. J. J. R. Kirkpatrick, D. S. Enion and D. A. R. Burd, ‘Hydrofluoric acid burns: a review’, Burns, 21(7), 483-493 (1995).
8. J. E. Lee, B. S. Suh, C. H. Jo, W.-C. Lee, ‘Hydrofluoric Acid Burns: A Case Report’, Korean J Occup Environ, 23(2), 255-233 (2011).
9. Korea Food & Drug Administration, ‘Risk Profile :Fluorine’, 2010.
10. OECD, ‘OECD Guiding Principles for Chemical Accident Prevention, Preparedness and Response’, 2003.
11. OECD, ‘Cuidance on Developing Safety Performance Indicators’, 2003.
12. Ministry of Environment, Official test method enacted by Korean Ministry of Environment-soil, 2009.
13. USEPA Method 9214, Potentiometric determination of fluoride in aqueous samples with ion-selective electrode, 1996.
14. ASTM methods D4646-87, D5233-92, D3987-85.
15. KS M 0036, General rules for ion-selective electrode method, 2008.