- P-ISSN 1225-0163
- E-ISSN 2288-8985
This study presented an analytical method for detecting radium in soils using a liquid scintillation counter (LSC). The isotope 226Ra was extracted from soil using the fusion method and then separated from interfering radionuclides using the precipitation method. Radium was coprecipitated as sulfate salts with barium (Ba) and then converted into Ba(Ra)CO3, which is soluble in an acidic solution. The isotope 222Rn, the decay progeny of 226Ra, was trapped in a water immiscible cocktail and analyzed by LSC. The pulse shape analysis (PSA) level was estimated using 90Sr and 226Ra standard solutions. The figure of merit was the highest at PSA 80, while the alpha spillover was the lowest at PSA 80. The counting efficiency was 243 ± 2% in a glass vial. This analytical method was verified with International Atomic Energy Agency (IAEA) reference materials, including IAEA-312, IAEA-314, and IAEA-315. The recovery ranged from 60–82%, while the relative bias between the measured value and the recommended value was less than 10%. The minimum detectable activity was 2.1 Bq kg−1 with dry mass 1 g, the background count rate of 0.02 cpm, the recovery rate of 70% and counting time of 30 min.
1. P. Curie and M. Curie, ‘Bémont G. Sur une nouvelle substance fortement radio-active contenue dans la pechblende’, C. R. Acad. Sci. Gen., 127, 1215-1217 (1898).
2. G. V. Alexander, R. E. Nusbaum and N. S. Macdonald, J. Biol. Chem., 218(2) 911-919 (1956).
3. World Health Organization, http://www.who.int/ionizing_rad-iation/env/en, Accessed 12 Oct 2015.
4. S. S. Oh, S. B. Koh and S. J. Yong, J. Korean Med. Assoc., 55(3), 223-229 (2012).
5. WHO, ‘WHO handbook on indoor radon: a public health perspective’, Switzerland, 2009
6. Nuclear Safety and Security Commission No. 2012-212(2012.6.14.), Republic of Korea.
7. C. H. Chung, ‘Development of methods for the determination of 235,238U, 226Ra, 232Th and 40K in raw materials or by-products’, KINS/HR-1315, KAERI-CR-529/2013 (2013).
8. G. Jia and J. Jia, J. Environ. Radioact., 106, 98-119(2012).
9. Y. Y. Ji, K. H. Chung, J. M. Lim, C. J. Kim M. Jang, M. J. Kang and S. T. Park, Appl. Radiat. Isot., 97, 1-7(2015).
10. H. P. Moreno, A. Absi, I. Vioque, G. Manjon and R. Garcia-Tenorio, J. Radioanal. Nucl. Chem., 245(2), 309-315 (2000).
11. R. Bonjanowski, Z. Radecki and R. Piekos, SCI. WORLD J., 2, 1891-1905 (2002).
12. H. Lee, J. M. Lim, Y. Y. Ji, K. H Chung, M. J. Kang, G. S. Choi and J. H. Lee, JNFCWT., 13(2), 113-122 (2015).
13. IAEA, ‘A Procedure for the Rapid Determination of 226Ra and 228Ra in Drinking Water by Liquid Scintillation Counting’, Vienna, Austria, (2014).
14. H. J. Woo, Y. Y. Yoon, S. Y. Cho and S. K. Chun, J. Korean Asso. Radiat. Prot., 20(4), 275-283 (1995).
15. A. Baeza, L. M. Del-Rio and A. Jimenez, Rdiochim. Acta., 83(2), 53-60 (1998).
16. A. M. Volpe, J. A. Olivares and M. T. Murrell, Anal. Chem., 63(9), 919-916 (1991).
17. G. Jia, G. Torri and R. Ocone, J. Radioanal. Nucl. Chem., 273, 779-783 (2007).
18. Cho, J. S. ‘A study of the uncertainty of 222Rn concentration in ground water’ Ph.D. Dissertation, Pusan National University, Geumjeong, Pusan, 2014.
19. C. K. Kim and C. S. Kim, J. Korean Asso. Radiat. Prot., 20(2), 103-115 (1995).
20. V. Strachnov, V. Valkovic, R. Zeisler and R. Dekner, ‘Report on the Intercomparison Run IAEA-312:226Ra, Th and U in soil’, IAEA/AL/036 (1991).
21. V. Strachnov, V. Valkovic, R. Zeisler and R. Dekner, ‘Report on the Intercomparison Run IAEA-314:226Ra, Th and U in soil’, IAEA/AL/038 (1991).
22. S. Ballestra, J. Gastaud, P. Parsi and D. Vas, ‘Report on the Intercomparison Run IAEA-315:Radionuclides in Marine Sediment’, IAEA/AL/065 (1996).
23. http://www4.ncsu.edu/~franzen/public_html/CH201/data/Solubility_product_constants.pdf, Accessed at 17 Mar 2016.
24. W. C. Burnett and W. C. Tai, Anal. Chem., 64(15), 1691-1697 (1992).
25. L. A. Currie, Anal. Chem., 40(3), 586-593 (1968).
26. S. L. Maxwell and B.K. Culligan, J. Radioanal. Nucl. Chem., 293, 149-156 (2012).