- P-ISSN 1225-0163
- E-ISSN 2288-8985
In this study, patterns of proteome expression were monitored and specifically expressed proteins in human milk were detected in collected human milk after 1 week, 3 weeks, and 6 weeks from delivery. A quantitative shotgun proteomic approach was used to identify human milk proteins and reveal their relative expression amounts. For each sample, two independent human milk samples from two mothers were pooled, and then three replicated shotgun proteomic analyses were carried out. Casein, which is a highly abundant protein in human milk, was removed, and then trypsin was treated to produce a digested peptide mixture. The peptides were loaded in the home-made reversed-phase C18 fused-silica capillary column, and then the eluted peptides were analyzed by using a linear ion-trap mass spectrometer. The relative quantitation of proteins was performed by the normalized spectral count method. For each sample, 81-109 non-redundant proteins were identified. The identified proteins consisted of glycoproteins, metabolic enzyme, and chaperon enzymes such as lactoferrin, carboxylic ester hydrolase, and clusterin. The comparative analysis for the 63 proteins, which were reproducibly identified in all three replications, revealed that 25 proteins were statically significant differentially expressed. Among the differentially expressed proteins, Ig lambda-7 chain C region and tenascin drastically decreased with the delivery time.
1. R. Jenness, Semin Perinatol, 3(3), 225-39 (1979).
2. A. Mange, V. Bellet, E. Tuaillon, P. Van de Perre and J. Solassol, J. Chromatogr B Analyt Technol Biomed Life Sci, 876(2), 252-256 (2008).
3. K. L. Beck, D. Weber, B. S. Phinney, J. T. Smilowitz, K. Hinde, B. Lonnerdal, I. Korf and D. G. Lemay, J. Proteome Res., 14(5), 2143-2157 (2015).
4. J. W. Froehlich, E. D. Dodds, M. Barboza, E. L. McJimpsey, R. R. Seipert, J. Francis, H. J. An, S. Freeman, J. B. German and C. B. Lebrilla, J. Agric. Food Chem, 58(10), 6440-6448 (2010).
5. Y. Liao, R. Alvarado, B. Phinney and B. Lonnerdal, J Proteome Res, 10(8), 3530-3541 (2011).
6. A. C. Paoletti, T. J. Parmely, C. Tomomori-Sato, S. Sato, D. Zhu, R. C. Conaway, J. W. Conaway, L. Florens and M. P. Washburn, Proc. Natl. Acad Sci. USA, 103(50), 18928-18933 (2006).
7. B. Zybailov, A. L. Mosley, M. E. Sardiu, M. K. Coleman, L. Florens and M. P. Washburn, J. Proteome Res., 5(9), 2339-2347 (2006).
8. N. M. Griffin, J. Yu, F. Long, P. Oh, S. Shore, Y. Li, J. A. Koziol and J. E. Schnitzer, Nat. Biotechnol, 28(1), 83-89 (2010).
9. D. S. Newburg, G. M. Ruiz-Palacios and A. L. Morrow, Annu. Rev. Nutr., 25, 37-58 (2005).
10. C. E. Molinari, Y. S. Casadio, B. T. Hartmann, A. Livk, S. Bringans, P. G. Arthur and P. E. Hartmann, J Proteome Res, 11(3), 1696-1714 (2012).
11. W. L. Hurley and P. K. Theil, Nutrients, 3(4), 442-474(2011).
12. P. Brandtzaeg, J. Pediatr, 156(2 Suppl), S8-15 (2010).
13. E. A. Lekchnov, S. E. Sedykh, P. S. Dmitrenok, V. N. Buneva, and G. A. Nevinsky, Int. Immunol., 27(6), 297-306 (2015).
14. R. G. Mansour, L. Stamper, F. Jaeger, E. McGuire, G. Fouda, J. Amos, K. Barbas, T. Ohashi, S. M. Alam, H. Erickson and S. R. Permar, PLoS One, 11(5), e0155261(2016).
15. G. G. Fouda, F. H. Jaeger, J. D. Amos, C. Ho, E. L. Kunz, K. Anasti, L. W. Stamper, B. E. Liebl, K. H. Barbas, T. Ohashi, M. A. Moseley, H. X. Liao, H. P. Erickson, S. M. Alam and S. R. Permar, Proc Natl Acad Sci U S A, 110(45), 18220-18225 (2013).
16. T. Yang, Y. Zhang, Y. Ning, L. You, D. Ma, Y. Zheng, X. Yang, W. Li, J. Wang and P. Wang, Chin. Med. J. (Engl), 127(9), 1721-1725 (2014).
17. W. H. Hahn, J. H. Song, J. B. Seo, J. E. Lee, J. S. Lee, S. Song and N. M. Kang, Asia Pac. J. Clin. Nutr., 27(1), 204-210 (2018).