Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Determination of isoquinoline alkaloids by UPLC-ESI-Q-TOF MS: Application to Chelidonium majus L.

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.6, pp.379-389
https://doi.org/10.5806/AST.2017.30.6.379


  • Downloaded
  • Viewed

Abstract

In this study, we set up an analytical method that can be used for rapid and accurate determination of representative isoquinoline alkaloids in medicinal plants using UPLC-ESI-Q-TOF MS (ultra pressure liquid chromatography–electrospray ionization–quadrupole–time-of-flight mass spectrometry). The compounds were eluted on a C18 column with 0.1 % formic acid and acetonitrile, and separated with good resolution within 13 min. Each of the separated components was characterized by precursor ions (generated by ESI-Q-TOF) and fragment ions (produced by collision-induced dissociation, CID), which were used as a reliable database. We also performed method validation: analytes showed excellent linearity (R2, 0.9971–0.9996), LOD (5–25 ng/mL), LOQ (17–82 ng/mL), accuracy (91.6–97.4 %) as well as intra- and inter-day precisions (RSD, 1.8–3.2 %). In the analysis of Chelidonium majus L., magnoflorine, coptisine, sanguinarine, berberine and palmatine were detected by matching retention times and characteristic fragment ion patterns of reference standards. We also confirmed that, among the quantified components, coptisine was present in the highest quantity. Furthermore, alkaloid profiling was carried out by analyzing the fragment ion patterns corresponding to peaks of unknown components. In this manner, protopine, chelidonine, stylopine, dihydroberberine, canadine, and nitidine were tentatively identified. We also proposed the molecular structure of the fragment ions that appear in the mass spectrum. Therefore, we concluded that our suggested method for the determination of major isoquinoline alkaloids by UPLC-Q-TOF can be useful not only for quality control, but also for rapid and accurate investigation of phytochemical constituents of medicinal plants.

keywords
UPLC-Q-TOF, Isoquinoline alkaloids, Chelidonium majus L., Chemical profiling


Reference

1

1. M. Yang, J. Sun, Z. Lu, G. Chen, S. Guan, X. Liu, B. Jiang, M. Ye and D. A. Guo, J. Chromatogr. A, 1216(11), 2045-2062 (2009).

2

2. P. J. Facchini, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 52, 29-66 (2001).

3

3. E. Kupeli, M. Kosar, E. Yesilada, K. Husnu and C. Baser, Life Sciences, 72(6), 645-657 (2002).

4

4. J. Yin, J. Ye and W. Jia, Acta. Pharm. Sin. B., 2(4), 327-334 (2012).

5

5. Z. Zhang, B. Li, X. Meng, S. Yao, L. Jin, J. Yang, J. Wang, H. Zhang, Z. Zhang, D. Cai, Y. Zhang and G. Ning, Sci. Rep., 6, 20848 (2016).

6

6. L. Chen, H. Tian, M. Li, C. Ge, F. Zhao, L. Zhang, H. Li, J. Liu, T. Wang, M. Yao and J. Li, Tumour Biology :Tumour. Biol., 37(5), 5951-5961 (2016).

7

7. X. Tian, Z. Li, Y. Lin, M. Chen, G. Pan and C. Huang, Anal. Bioanal. Chem., 406(3), 841-849 (2014).

8

8. H. B. Chen, C. D. Luo, J. L. Liang, Z. B. Zhang, G. S. Lin, J. Z. Wu, C. L. Li, L. H. Tan, X. B. Yang, Z. R. Su, J. H. Xie and H. F. Zeng, Eur. Pharmacol., 811, 222-231 (2017).

9

9. F. Ling, Z. Q. Wu, C. Jiang, L. Liu and G. X. Wang, J. Fish. Dis., 39(8), 993-1000 (2016).

10

10. P. Weerasinghe, S. Hallock, S. C. Tang, B. Trump and A. Liepins, Experimental and Toxicologic Pathology :Exp. Toxicol. Pathol., 58(1), 21-30 (2006).

11

11. P. B. Amal K. Maji, International Journal of Herbal Medicine, 3(1), 10-27 (2015).

12

12. L. Kursinszki, Á. Sárközi, Á. Kéry and É. Szöke, Chromatographia, 63(S13), S131-S135 (2006).

13

13. E.-K. Kim, E.-K. Jeong, S.-B. Han, J.-H. Jung and J.-K. Hong, Bull. Korean. Chem. Soc., 32(10), 3597-3602(2011).

14

14. P. Deevanhxay, M. Suzuki, N. Maeshibu, H. Li, K. Tanaka and S. Hirose, J. Pharm. Biomed. Anal., 50(3), 413-425 (2009).

15

15. Y. Shen, R. Zhang, R. J. Moore, J. Kim, T. O. Metz, K. K. Hixson, R. Zhao, E. A. Livesay, H. R. Udseth and R. D. Smith, Anal. Chem., 77(10), 3090-3100 (2005).

16

16. P. M. Le, M. McCooeye and A. Windust, Anal. Bioanal. Chem., 406(6), 1739-1749 (2014).

17

17. M. Sun, J. Liu, C. Lin, L. Miao and L. Lin, Acta. Pharm. Sin. B., 4(3), 208-216 (2014).

18

18. Y. Qi, S. Li, Z. Pi, F. Song, N. Lin, S. Liu and Z. Liu, Talanta, 118, 21-29 (2014).

19

19. J. H. Lee, J. Y. Choi, H. Park, C. Y. Yoon, S. K. Park, S. Y. Baek and S. Cho, Anal. Methods, 7(18), 7733-7740(2015).

20

20. A. Kruve, I. Leito and K. Herodes, Anal. Chim. Acta., 651(1), 75-80 (2009).

21

21. M. Caban, N. Migowska, P. Stepnowski, M. Kwiatkowski and J. Kumirska, J. Chromatogr. A, 1258, 117-127 (2012).

22

22. L. V. Perez-Arribas, F. J. Manuel de Villena-Rueda, M. E. Leon-Gonzalez, R. Gonzalo-Lumbreras and L. M. Polo-Diez, Anal. Bioanal. Chem., 396(7), 2647-2656 (2010).

23

23. Q. Xiang, Y. Hashi and Z. Chen, J. Sep. Sci., 39(11), 2036-2042 (2016).

24

24. A. Singh, V. Bajpai, S. Kumar, A. K. Singh Rawat and B. Kumar, J. Pharm. Anal., 7(2), 77-86 (2017).

25

25. Y. Gu, D. Qian, J. A. Duan, Z. Wang, J. Guo, Y. Tang and S. Guo, J. Sep. Sci., 33(8), 1004-1009 (2010).

26

26. J. Zhou, J. B. Sun, P. Zheng, J. Liu, Z. H. Cheng, P. Zeng and F. Q. Wang, Anal. Bioanal. Chem., 403(7), 1951-1960 (2012).

27

27. A. Panzer, A. M. Joubert, P. C. Bianchi, E. Hamel and J. C. Seegers, Eur. J. Cell. Biol., 80(1), 111-118 (2001).

28

28. Z. H. Zhang, J. Li, H. J. Zhang, A. J. Deng, L. Q. Wu, Z. H. Li, H. R. Song, W. J. Wang and H. L. Qin, J. Asian. Nat. Prob. Res., 18(6), 576-586 (2016).

29

29. Z. Z. Ma, W. Xu, N. H. Jensen, B. L. Roth, L. Y. Liu-Chen and D. Y. Lee, Molecules., 13(9), 2303-2312 (2008).

30

30. R. Suau, B. Cabezudo, R. Rico, F. Najera and J. M. Lopez-Romero, Phytochem. Anal., 13(6), 363-367 (2002).

31

31. S. H. Grimm, G. Hofner and K. T. Wanner, Anal. Bioanal. Chem., 407(2), 471-485 (2015).

32

32. P. Srivastava, G. S. Moorthy, R. Gross and J. S. Barrett, PLoS. ONE., 8(6), e63305 (2013).

상단으로 이동

Analytical Science and Technology