Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Development and validation of a qualitative GC-MS method for methamphetamine and amphetamine in human urine using aqueous-phase ethyl chloroformate derivatization

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2020, v.33 no.1, pp.23-32
    https://doi.org/10.5806/AST.2020.33.1.23
    Jiwoo Kim (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
    Yeong Eun Sim (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
    Jin Young Kim (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
    • Downloaded
    • Viewed

    Abstract

    Methamphetamine (MA) is the most common and available drug of abuse in Korea and its primary metabolite is amphetamine (AP). Detection of AP derivatives, such as MA, AP, phentermine (PT), MDA, MDMA, and MDEA by the use of immunoassay screening is not reliable and accurate due to cross-reactivity and insufficient specificity/sensitivity. Therefore, the analytical process accepted by most urine drug-testing programs employs the two-step method with an initial screening test followed by a more specific confirmatory test if the specimen screens positive. In this study, a gas chromatography-mass spectrometric (GC-MS) method was developed and validated for confirmation of MA and AP in human urine. Urine sample (500 μL) was added with N-isopropylbenzylamine as internal standard and ethyl chloroformate as a derivatization reagent, and then extracted with 200 μL of ethyl acetate. Extracted samples were analysed with GC-MS in the SIM/ Scan mode, which were screened by Cobas c311 analyzer (Roche/Hitachi) to evaluate the efficiency as well as the compatibility of the GC-MS method. Qualitative method validation requirements for selectivity, limit of detection (LOD), precision, accuracy, and specificity/sensitivity were examined. These parameters were estimated on the basis of the most intense and characteristic ions in mass spectra of target compounds. Precision and accuracy were less than 5.2 % (RSD) and ±14.0 % (bias), respectively. The LODs were 3 ng/mL for MA and 1.5 ng/mL for AP. At the screening immunoassay had a sensitivity of 100% and a specificity of 95.1 % versus GC-MS for confirmatory testing. The applicability of the method was tested by the analysis of spiked urine and abusers' urine samples.

    keywords
    validation, qualitative analysis, aqueous-phase derivatization, urine, methamphetamine, GC-MS


    Reference

    1

    1. S. Y. Kim, J. S. Lee and D. W. Han, J. Korean Med. Assoc., 56, 762-770 (2013).

    2

    2. Y. H. Mun and J. H. Kim, J. Korean Soc. Clin. Toxicol., 16, 176-180 (2018).

    3

    3. M. D. Anglin, C. Burke, B. Perrochet, E. Stamper and S. Dawud-Noursi, J. Psychoactive Drugs, 32, 137-141(2000).

    4

    4. T. K. Mackey and B. A. Liang, J. Med. Internet Res., 15, 665-689 (2013).

    5

    5. J. Lee, S. Yang, Y. Kang, E. Han, L. Y. Feng, J. H. Li and H. Chung, Forensic Sci. Int., 272, 1-9 (2017).

    6

    6. Supreme Prosecutors' Office, White Paper on Drug-Related Crimes 2018, Seoul, Korea, 2019.

    7

    7. N. J. Kwon and E. Han, Forensic Sci. Int., 286, 81-85(2018).

    8

    8. J. Caldwell, L. G. Dring and R. T. Williams, Biochem. J., 129, 11-22 (1972).

    9

    9. Y. Xue, J. T. He, K. K. Zhang, L. J. Chen, Q. Wang and X. L. Xie, Biochem. Biophys. Res. Commun., 509, 395-401 (2019).

    10

    10. J. R. Richards, T. E. Albertson, R. W. Derlet, R. A. Lange, K. R. Olson and B. Z. Horowitz, Drug Alcohol Depend., 150, 1-13 (2015).

    11

    11. G. M. Reisfield, B. A. Goldberger and R. L. Bertholf, Bioanalysis, 1, 937-952 (2009).

    12

    12. A. Saitman, H. D. Park and R. L. Fitzgerald, J. Anal. Toxicol., 38, 387-396 (2014).

    13

    13. A. D. de Jager and N. L. Bailey, J. Chromatogr. B, 879, 2642-2652 (2011).

    14

    14. S. J. Mulé and G. A. Casella, J. Anal. Toxicol., 12, 102-107 (1988).

    15

    15. E. R. Perez, J. A. Knapp, C. K. Horn, S. L. Stillman, J. E. Evans and D. P. Arfsten, J. Anal. Toxicol., 40, 201-207 (2016).

    16

    16. D. K. Lee, M. H. Yoon, Y. P. Kang, J. Yu, J. H. Park, J. Lee and S. W. Kwon, Food Chem., 141, 3931-3937(2013).

    17

    17. J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. Patel, P. D. Fraser and P. M. Bramley, J. Exp. Bot., 56, 219-243 (2005).

    18

    18. C. Jiménez, R. Ventura and J. Segura, J. Chromatogr. B, 767, 341-351 (2002).

    19

    19. E. Trullols, I. Ruisánchez and F. X. Rius, Trends Anal. Chem., 23, 137-145 (2004).

    20

    20. R. Fogerson, D. Schoendorfer, J. Fay and V. Spiehler, J. Anal. Toxicol., 21, 451-458 (1997).

    21

    21. P. S. Cheng, C. Y. Fu, C. H. Lee, C. Liu and C. S. Chien, J. Chromatogr. B, 852, 443-449 (2007).

    22

    22. M. Gaugain-Juhel, B. Delépine, S. Gautier, M. P. Fourmond, V. Gaudin, D. Hurtaud-Pessel, E. Verdon and P. Sanders, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 26, 1459-1471 (2009).

    23

    23. P. Hušek, J. Chromatogr. B, 717, 57-91 (1998).

    24

    24. K. Mohamed, J. Anal. Toxicol., 41, 639-645 (2017).

    25

    25. J. -Y. Moon, K. J. Kim, M. H. Moon, B. C. Chung and M. H. Choi. J. Lipid Res., 52, 1595-1603 (2011).

    26

    26. Y. Qiu, M. Su, Y. Liu, M. Chen, J. Gu, J. Zhang and W. Jia, Anal. Chim. Acta, 583, 277-283 (2007).

    27

    27. S. P. Elliott, D. W. S. Stephen and S. Paterson, Sci. Justice, 58, 335-345 (2018).

    28

    28. A. G. Verstraete and F. V. Heyden, J. Anal. Toxicol., 29, 359-364 (2005).

    29

    29. A. J. Barnes, I. Kim, R. Schepers, E. T. Moolchan, L. Wilson, G. Cooper, C. Reid, C. Hand and M. A. Huestis, J. Anal. Toxicol., 27, 402-407 (2003).

    30

    30. W. Y. Pyo, C. H. Jo and S. W. Myung, Chromatographia, 64, 731-737 (2006).

    31

    31. J. C. Cheong, J. Y. Kim, M. K. In and W. J. Cheong, Anal. Sci. Technol., 21, 41-47 (2008).

    상단으로 이동

    Analytical Science and Technology