- P-ISSN 1225-0163
- E-ISSN 2288-8985
Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and Kmeans clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime
1. Supreme Prosecutors' Office, White Paper on Drug-Related Crimes 2018, Seoul, Korea, 2019.
2. D. E. Greydanus and J. Merrick, Int. J. Disabil. Hum. Dev., 12, 229-233 (2013).
3. A. W. Brzeczko, R. Leech and J. G. Stark, Am. J. Drug. Alcohol Abuse, 39, 284-290 (2013).
4. K. M. Andrews, J. Forensic Sci., 40, 551-560 (1995).
5. C. Chulathida and C. Summon, Curr. Opin. Psychiatry, 28, 269-274 (2015).
6. A. Gamma, R. Schleifer, W. Weinmann, A. Buadze and M. Liebrenz, PLoS One, 11, e0166566(1-10) (2016).
7. United Nations Office on Drugs and Crime, World Drug Report 2019, Vienna, United Nations, 2019.
8. Z. Wang, X. T. Shao, D. Q. Tan, J. H. Yan, Y. Xiao, Q. D. Zheng, W. Pei, Z. Wang and D. G. Wang, Drug Alcohol. Depend., 194, 302-309 (2019).
9. C. Chomchai and S. Chomchai, Curr. Opin. Psychiatry, 28, 269-274 (2015).
10. C. Angkurawaranon, W. Jiraporncharoen, S. Likhitsathian, K. Thaikla, M. Kanato, U. Perngparn, S. Assanangkornchai and A. Aramrattana, Drug Alcohol Rev., 37, 658-663(2018).
11. H. T. Luong, Asian Survey, 59, 717-737 (2019).
12. K. Tanaka, T. Ohmor, T. Inoue and S. Seta, J. Forensic Sci., 39, 500-511 (1994).
13. F. M. Dayrit and M. C. Dumlao, Forensic Sci. Int., 144, 29-36 (2004).
14. B. J. Ko, S. I. Suh, Y. J. Suh, M. K. In and S. H. Kim, Forensic Sci. Int., 170, 142-147 (2007).
15. S. Choe, S. Heo, H. Choi, E. Kim, H. Chung and J. Lee, Forensic Sci. Int., 227, 48-51 (2013).
16. H. J. Lee, E. Han, J. Lee, H. Chung and S. G. Min, Forensic Sci. Int., 268, 116-122 (2016).
17. K. Kuwayama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, Y. Iwata, H. Inoue, S. Saitoh and T. Kishi, Forensic Sci. Int., 160, 44-52 (2006).
18. Y. T. Iwata, H. Inoue, K. Kuwayama, T. Kanamori, K. Tsujikawa, H. Miyaguchi and T. Kishi, Forensic Sci. Int., 161, 92-96 (2006).
19. Y. Makino, Y. Urano and T. Nagano, J. Chromatogr. A, 947, 151-154 (2002).
20. A. R. Khajeamiri, M. Faizi, F. Sohani, T. Baheri and F. Kobarfard, Forensic Sci. Int., 217, 204-206 (2012).
21 H. Lee, S. Shen and N. Grinberg, J. Liq. Chromatogr. R. T., 31, 2235-2252 (2008).
22. T. Pacchiarotta, E. Nevedomskaya, A. Carrasco-Pancorbo, A. M. Deelder and O. A. Mayboroda, J. Biomol. Tech., 21, 205-213 (2010).
23. J. V. Hinshaw, LCGC North Am., 33, 470-477 (2015).
24. V. Kunalan, N. Nic Daéid, W. J. Kerr, H. A. Buchanan and A. R. McPherson, Anal. Chem., 81, 7342-7348 (2009).
25. B. Remberg and A. H. Stead, Bull. Narcotics, LI, 97-118 (1999).
26. R. P. Barron, A. V. Kruegel, J. M. Moore and T. C. Kram, Anal. Chem., 57, 1147-1158 (1974).
27. H. F. Skinner, Forensic Sci. Int., 48, 123-134 (1990).
28. T. S. Cantrell, B. John, L. Johnson and A. C. Allen, Forensic Sci. Int., 39, 39-53 (1988).
29. H. Salouros, M. Collins, A. V. George and S. Davies, J. Forensic Sci., 55, 605-615 (2010).
30. B. J. Ko, S. Suh, Y. J. Suh, M. K. In, S. H. Kim and J. H. Kim, Forensic Sci. Int., 221, 92-97 (2012).
31. H. Messai, M. Farman, A. Sarraj-Laabidi, A. Hammami-Semmar and N. Semmar, Foods, 5, 77(1-35) (2016).
32. D. Granato, J. S. Santos, G. B. Escher, B. L. Ferreira and R. M. Maggio, Trends Food Sci. Technol., 72, 83-90 (2018).
33. H. Tsugawa, Y. Tsujimoto, M. Arita, T. Bamba and E. Fukusaki, BMC Bioinformatics, 12, 131(1-13) (2011).
34. N. Gerhardt, S. Schwolow, S. Rohn, P. R. Pérez-Cacho, H. Galán-Soldevilla L. Arce and P. Weller, Food Chem., 278, 720-728 (2019).
35. K. Sirén, U. Fischer and J. Vestner, Anal. Chim. Acta:X, 1, 100005(1-8) (2019).
36. M. Cuperlovic-Culf, Metabolites, 8, 4(1-16) (2018).
37. J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang and Y. Zhou, arXiv preprint arXiv:1712.00409 (2017).
38. S. H. Kim, S. J. Oh, G. Y. Yoon and W. K. Kim, Korean J. Artif. Int., 5, 29-37 (2017).