- P-ISSN 1225-0163
- E-ISSN 2288-8985
Human milk (HM) glycoproteins play important roles protecting infants against various pathogens. Recently, freezing HM is reported to affect some glycoproteins and freeze-drying is suggested as an alternative method. However, the effects of freeze-drying on HM glycoproteins were not evaluated yet. Six fresh HM samples were collected from three healthy mothers at 15 and 60th days of lactation from each mother. Each sample was divided into frozen and freeze-dried subgroups yielding totally 12 samples, and the glycoproteomic analysis was performed by liquid chromatography mass spectrometry. The results were compared between samples of 15 and 60th days of lactation, and before and after the freeze-drying. Totally, 203 glycoproteins were detected. The glycoprotein levels were not different between two groups of 15/60th day of lactation and before/after freeze-drying groups (P > 0.050). In addition, significant correlation of glycoprotein levels was found between the different lactation stages (r = 0.897, P < 0.001) and the status of freeze-drying (r = 0.887, P < 0.001) in a partial correlation analysis. As no significant change of HM glycoproteins was not found after the freezedrying, we hope that introducing freeze-drying to HM banks is supported by the present study. This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIP) (No.2017R1D1A1B03034270; No.2020R1A2C1005082).
1. B. Liu and D. S. Newburg, Breastfeeding. Med., 8, 354-362 (2013).
2. J. A. Peterson, S. Patton and M. Hamosh, Biol. Neonat. 74, 143-162 (1998).
3. S. Karav, A. Le Parc, J. M. Leite Nobrega de Moura Bell, S. A. Frese, N. Kirmiz, D. E. Block, D. Barile and D. A. Mills, Appl. Environ. Microbiol. 82, 3622-3630(2016).
4. C. E. Molinari, Y. S. Casadio, B. T. Hartmann, A. Livk, S. Bringans, P. G. Arthur and P. E. Hartmann, J. Proteome. Res., 11, 1696-1714 (2012).
5. X. Gao, R. J. McMahon, J. G. Woo, B. S. Davidson, A. L. Morrow and Q. Zhang, J. Proteome. Res., 11, 3897-3907 (2012).
6. W. H. Hahn, J. H. Song, J. B. Seo, J. E. Lee, J. S. Lee, S. Song, J. Lee and N. M. Kang, Asia. Pac. J. Clin. Nutr., 27, 204-210 (2018).
7. A. DeMarchis, K. Israel-Ballard, K. A. Mansen and C. Engmann, J. Perinatol., 37, 469-474 (2017).
8. Italian Association of Human Milk Banks, S. Arslanoglu, E. Bertino, P. Tonetto, G. De Nisi, A. M. Ambruzzi, A. Biasini, C. Profeti, M. R. Spreghini and G. E. Moro, J. Matern. Fetal. Neonatal. Med., 23, 1-20 (2010).
9. N. R. Garcia-Lara, D. E. Vieco, J. De la Cruz-Bertolo, D. Lora-Pablos, N. U. Velasco and C. R. Pallas-Alonso, J. Pediatr. Gastroenterol. Nutr., 57, 377-382 (2013).
10. J. Salcedo, M. Gormaz, M. C. Lopez-Mendoza, E. Nogarotto and D. Silvestre, J. Pediatr. Gastroenterol. Nutr., 60, 527-532 (2015).
11. D. E. Rollo, P. G. Radmacher, R. M. Turcu, S. R. Myers and D. H. Adamkin, J. Perinatol., 34, 284-286 (2014).
12. M. V. Cortez and E. A. Soria, Breastfeeding. Med., 11, 551-554 (2016).
13. W. H. Hahn, J. Kim, S. Song, S. Park and N. M. Kang, J. Matern. Fetal. Neonatal. Med., 32, 985-991 (2017).
14. B. Lozano, A. I. Castellote, R. Montes and M. C. Lopez-Sabater, Int. J. Food. Sci. Nutr., 65, 703-707 (2014).
15. D. Gutierrez and J. A. de Almeida, J. Hum. Lact., 14, 333-335 (1998).
16. Centre for Clinical Practice at NICE. National Institute for Health and Clinical Excellence: Guidance. Donor Breast Milk Banks: The Operation of Donor Milk Bank Services. London: National Institute for Health and Clinical Excellence (UK); 2010.
17. J. Castro-Albarrán, B. R. Aguilar-Uscanga, F. Calon, I. St-Amour, J. Solís-Pacheco, L. Saucier and C. Ratti, Dry. Technol., 34, 1801-1809 (2016).
18. A. Cavazos-Garduño, J. C. Serrano-Niño, J. R. Solís-Pacheco, J. A. Gutierrez-Padilla, O. González-Reynoso, H. S. García and B. R. Aguilar-Uscanga, J. Food Nutr. Res., 4, 296-302 (2016).
19. A. K. Leung and R. S. Sauve, J. Natl. Med. Assoc., 97, 1010-1019 (2005).
20. J. Jeon, J. Yang, J. M. Park, N. Y. Han, Y. B. Lee and H. Lee, J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 1092, 88-94 (2018).
21. A. B. Arul, J. M. Park, H. Lee, J. H. Baek, J. Jeon, E. Ji, J. W. Oh and K. P. Kim, Curr. Proteomics., 13, 55-60(2016).
22. A. B. Arul, J. M. Park, H. Lee, N. Y. Han and J. Jeon, Curr. Proteomics., 13, 48-54 (2016).
23. J. Cox and M. Mann, Nat. Biotechnol., 26, 1367-1372(2008).
24. J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj and M. Mann, Mol. Cell. Proteomics., 13, 2513-2526(2014).
25. J. Zhu and K. A. Dingess, Nutrients., 11, (2019).
26. J. A. Peterson, M. Hamosh, C. D. Scallan, R. L. Ceriani, T. R. Henderson, N. R. Mehta, M. Armand and P. Hamosh, Pediatr. Res., 44, 499-506 (1998).
27. Y. Liao, R. Alvarado, B. Phinney and B. Lonnerdal, J. Proteome. Res., 10, 1746-1754 (2011).
28. Y. Lu, J. Liu, Y. Jia, Y. Yang, Q. Chen, L. Sun, S. Song, L. Huang and Z. Wang, J. Agric. Food Chem., 67, 10702-10712 (2019).