• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Development of the rapid preconcentration method for determination of actinides in large volume seawater sample using Actinide resin

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2020, v.33 no.4, pp.186-196
    https://doi.org/10.5806/AST.2020.33.4.186

    Ji-Young Park (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
    Jong-Myoung Lim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
    Mee Jang (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
    Hyuncheol Kim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
    Jin-Hong Lee (Department of Environmental Engineering, Chung-Nam National University)
    • Downloaded
    • Viewed

    Abstract

    A simple and rapid preconcentration method of actinide from seawater using Actinide resin was developed and tested with the seawater spiked with a known U and Th. The developed method of Actinide resin based on column chromatography is less time-consuming and requires less labor compared with a typical co-precipitation technique for preconcentration of actinides. U and Th, which are relatively weak-bonded with Actinide resin among actinides, were used to determine the optimum flow rate of seawater sample and evaluate the capacity of Actinide resin to concentrate actinides from seawater. A flow rate of 50 mL min−1 was available with Actinide resin 2 mL (BV, bed volume). When 5 or 10 L of seawater containing U were loaded on Actinide resin (2 mL, BV) at 50 mL min−1, the recovery of U was 93 % and 86 %, respectively. For extraction of actinides bound with Actinide resin, we compared three methods: solvent extraction, ashing-acid digestion, and ashingmicrowave digestion. Ashing-microwave digestion method shows the best performance of which is the recovery of 100 % for U and 81 % for Th. For the preconcentration of actinides in 200 L of seawater, a typical coprecipitation method requires 2-3 days, but the developed method in this study is achieved the high recovery of actinides within 12 h.

    keywords
    actinide resin, actinides, concentration, seawater, ICP-MS, microwave digestion


    Reference

    1

    1. United Nations Scientific Committee on the Effects of Atomic Radiation, ‘Sources and effects of ionizing radiation’, UNSCEAR 2008 Report, 2010.

    2

    2. K. Buesseler, M. Dai, M. Aoyama, C.B. Nelson, S. Charmasson, K. Higley, V. Maderich, P. Masque, P. J. Morris, D. Oughton and J.N. Smith, Annu. Rev. Mar. Sci., 9, 173-203 (2017).

    3

    3. TEPCO, ‘Report on Treated Water Disposal’, https://www.tepco.co.jp/en/hd/newsroom/reports/archives/2020/pr20200327-e.html, Accessed 07 May 2020.

    4

    4. C.S. Kim et al., ‘Marine Environmental Radioactivity Survey’, Korea Institute of Nuclear Safety, KINS/ER-092, 2018.

    5

    5. L. León Vintró, P. I. Mitchell, O. M. Condren, A. B. Downes, C. Papucci and R. Delfanti, Sci. Total. Environ., 237-238, 77-91 (1999).

    6

    6. S. H. Lee, J. Gastaud, J. J. L. Rosa, L. L. W. Kwong, P. P. Povinec, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. D. Tada and G. M. Santos, J. Radioanal. Nucl. Chem., 248(3), 757-764 (2001).

    7

    7. Q. Cehn, H. Dahlgaard, S. P. Nielsen and A. Aarkrog, J. Radioanal. Nucl. Chem., 253(3), 451-458 (2002).

    8

    8. W. Men, J. Zheng, H. Wang, Y. Ni, T. Aono, S. L. Maxwll, K. Tagami, S. Uchida and M. Yamada, Sci. Rep., 8, 1892 (2018)

    9

    9. S. L. Maxwell, B. K. Culligan, J.B. Hutchison, R. C. Utsey and D. R. McAlister, J. Radioanal. Nucl. Chem., 300, 1175-1189 (2014).

    10

    10. E. P. Horwitz, R. Chiarizia and M. L. Dietz, React. Funct. Polym., 33, 25-36 (1997).

    11

    11. W .C. Burnett, D. R. Corbett, M. Schultz, E. P. Horwitz, R. Chiarizia, M. Dietz, A. Thakkar and M. Fern, J. Radioanal. Nucl. Chem., 226, 121-127 (1997).

    12

    12. I. W. Croudace, P. E. Warwick and R. C. Greenwood, Anal. Chim. Acta., 577, 111-118 (2006).

    13

    13. N. Navarro, L. Rodriguez, A. Alvarez and C. Sancho, Appl. Radiat. Isot., 61, 287-291 (2004).

    14

    14. R. H. Sankhe, A. Sengupta and N. N. Mirashi, J. Radioanal. Nucl. Chem., 302, 617-622 (2014).

    15

    15. S. M. Pike, K. O. Buesseler, C. F. Breier, H. Dulaiova, K. Stastna and F. Sebesta, J. Radioanal. Nucl, Chem., 296, 369-374 (2013).

    16

    16. H. Kim, Y. G. Kang, Y.-J. Lee, S.-D. Choi, J.-M. Lim, and J.-H. Lee, Talanta, 217, in press (2020) https://doi.org/10.1016/j.talanta.2020.121055

    17

    17. H. Tazoe, H. Obata, T. Yamagata, Z. Karube, H. Nagai and M. Yamada, Talanta, 152, 219-227 (2016).

    18

    18. S. L. Maxwell, B. K. Culligan, J. B. Hutchison, R. C. Utsey and D. R. McAlister, J. Radioanal. Nucl. Chem., 303, 709-717 (2015).

    19

    19. J. Y. Park, J. M. Lim, H. W. Lee and W. Lee, Anal. Sci. Technol., 31(3), 134-142 (2018).

    20

    20. L. Cao, W. Bu, J. Zheng, S. Pan, Z. Wang and S. Uchida, Talanta, 151, 30-41 (2016).

    21

    21. S. A. Yim, E. Han, J. S. Chae and J. Y. Yun, J. Radat. Prot., 35(3), 117-123 (2010).

    22

    22. J. Zheng and M. Yamada Appl. Radiat. Isot., 70, 1944-1948 (2012).

    23

    23. E. Braysher, B. Russell, S. Woods, M. Garcia-Miranda, P. Ivanov, B. Bouchard and D. Read, J. Radioanal. Nul. Chem., 321, 183-196 (2019).

    24

    24. S. Maischak and J. Fachinger, ‘Solid-phase extraction for the separation of actinides from radioactive waste’, WM’01 Conference, Tucson, AZ (2001).

    25

    25. D. F. Lupton, J. Merker and F. Scholz, X-Ray Spectrom., 26, 132-140 (1997).

    26

    26. J. Lehto and X. Hou, ‘Chemistry and Analysis of Radionuclides’, 1st Ed., p255, WILEY-VCH., German, 2012.

    27

    27. J. M. Lim, H. Lee, C. J. Kim, M. Jang, J. Y. Park and K. H. Chung, Anal. Sci. Technol., 30(5), 252-261 (2017).

    28

    28. H. Kim, K. H. Chung, Y. H. Jung, M. Jang, M. J. Kang and G. S. Choi, J. Radioanal. Nucl. Chem., 304, 321-327 (2015).

    상단으로 이동

    Analytical Science and Technology