Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    FT-IR analysis of flame resistant chemical mixture

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.1, pp.17-22
    https://doi.org/10.5806/AST.2021.34.1.17
    Younsu Kim (CNU Chemistry Core Facility, Chungnam National University)
    Jihyung Seo (CNU Chemistry Core Facility, Chungnam National University)
    Yoong Kee Choe (National Institute of Advanced Industrial Science and Technology)


    • Downloaded
    • Viewed

    Abstract

    In this study, flame retardant mixtures of decabromodiphenylethane (DBDPE) and Sb2O3 were analyzed using Fourier transform infrared (FT-IR) spectroscopy. The experimentally obtained wavenumbers of DBDPE and Sb2O3 were 1321 and 949 cm–1, respectively, whereas those obtained by theoretical calculation were 1370 and 818 cm–1, respectively. Strong correlation was observed between the mixing molar ratios and observed peak area ratios, suggesting that FT-IR analysis can be used to obtain relative amounts of the individual components of flame retardant mixtur

    keywords
    Flame retardants, FT-IR, decabromodiphenylethane, <TEX>$Sb_2O_3$</TEX>, antimony trioxide


    Reference

    1

    1. S. Giraud, F. Rault, A. Cayla and F. Salaun, ‘History and Evolution of Fire Retardants for Textiles’, COST MP1105 FLARETEX Workshop, Torino, Italy, 15-16(2016).

    2

    2. H. Zweifel, R. D. Maier, M. Schiller and S. E. Amos, ‘Plastics additives handbook’, 5th Ed., Hanser, Germany, 2001.

    3

    3. M. Brebu, E. Jakab and Y. Sakata, Journal of Analytical and Applied Pyrolysis, 79(1), 346-352 (2007).

    4

    4. C. Chivas, E. Guillaume, A. Sainrat and V. Barbosa, Fire Safety Journal, 44(5), 801-807 (2009).

    5

    5. M. Lounis, S. Leconte, C. Rousselle, L. P. Belzunces, V. Desauziers, J.-M. Lopez-Cuesta, J. M. Julien, D. Guenot and D. Bourgeois, Journal of Hazardous Materials, 366, 556-562 (2019).

    6

    6. P. López, S. A. Brandsma, P. E. G. Leonards and J. de Boer, Analytical and Bioanalytical Chemistry, 400(3), 871-883 (2011).

    7

    7. Y. L. Qi, S. S. Zhu and J. Zhang, Energy Build., 172, 47-56 (2018).

    8

    8. J.-D. Zuo, R.-X. Li, S.-H. Feng, G.-Y. Liu and J.-Q. Zhao, Journal of Central South University of Technology, 15(1), 64-68 (2008).

    9

    9. P. Eriksson, E. Jakobsson and A. Fredriksson, Environmental Health Perspectives, 109(9), 903-908 (2001).

    10

    10. G. Tang, H. H. Jiang, Y. D. Yang, D. P. Chen, C. L. Liu, P. Zhang, L. Zhou, X. J. Huang, H. Zhang and X. Y. Liu, J. Polym. Res., 27(12), Article number:375 (2020).

    11

    11. C. M. Vu, V. H. Nguyen and T. N. Van, Polym. Test, 93, Article number:106987 (2021).

    12

    12. J.-D. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics, 10(44), 6615-6620 (2008).

    13

    13. F. Weigend and R. Ahlrichs, Physical Chemistry Chemical Physics, 7(18), 3297-3305 (2005).

    14

    14. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson and T. L. Windus, Journal of Chemical Information and Modeling, 59(11), 4814-4820 (2019).

    15

    15. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, Journal of Cheminformatics, 4(1), Article number:17 (2012).

    16

    16. S. J. Gilliam, J. O. Jensen, A. Banerjee, D. Zeroka, S. J. Kirkby and C. N. Merrow, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 60(1-2), 425-434 (2004).

    17

    17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01, in, Wallingford, CT, 2016.

    18

    18. K. Kaviyarasu, D. Sajan and P. A. Devarajan, Applied Nanoscience, 3(6), 529-533 (2013).

    19

    19. A. M. Altwaiq, M. Wolf and R. van Eldik, Analytica Chimica Acta, 491(1), 111-123 (2003).

    20

    20. A.-L. Egebäck, U. Sellström and M. S. McLachlan, Chemosphere, 86(3), 264-269 (2012).

    21

    21. H. Y. Al-gubury, N. Y. Fairooz and Q. Y. Mohammed, Journal of Chemical and Pharmaceutical Sciences, 9(4), 2570-2574 (2016)

    상단으로 이동

    Analytical Science and Technology