Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.1, pp.23-35
    https://doi.org/10.5806/AST.2021.34.1.23


    Chul Hun Eum (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources)
    Taewook Kim (Department of Civil, Safety and Environmental Engineering, Hankyong National University)

    • Downloaded
    • Viewed

    Abstract

    In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10−2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L−1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 μg mL−1) and butylated hydroxytoluene (BHT, 2 μL of 500 μg mL−1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10−2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

    keywords
    large volatile sample, vacuum chamber, residual VOCs, decompression, GC-MS


    Reference

    1

    1. IEST-RP-CC031, Institute of Environmental Sciences and Technology, (2004).

    2

    2. EPA database, https://www.epa.gov/indoor-air-qualityiaq/technical-overview-volatile-organic-compounds#8.

    3

    3. W. Den, H. Bai and Y. Kang, J. Electrochem. Soc., 153(2), G149-G159 (2006).

    4

    4. T. Hattori, AIP Conf. Proc., 550, 275-284 (2001).

    5

    5. J. H. Higley and A. J. Michael, Solid State Technology, 39(7), 211-213 (1996).

    6

    6. SEMI Standard F21-95, Semiconductor Equipment and Materials International, Mountain View, CA (1996).

    7

    7. C. J. Salim, H. Liu and J. F. Kennedy, Carbohydr. Polym., 81(3), 640-644 (2010).

    8

    8. A. Marklund, B. Andersson and P. Haglund, Chemosphere, 53(9), 1137-1146 (2003).

    9

    9. T. Staaf and C. Ostman, J. Environ. Monit., 7, 883-887(2005).

    10

    10. A. Sjodin, H. Carlsson, K. Thuresson, S. Sjolin, A. Bergman and C. Ostman, Environ. Sci. Technol., 35, 448-454 (2001).

    11

    11. M. Garcia, I. Rodriguez and R. Cela, Anal. Chim. Acta, 590, 17-25 (2007).

    12

    12. O. B. Jonsson and U. L. Nilsson, Anal. Bioanal. Chem., 377, 182-188 (2003).

    13

    13. H. Carlsson, U. Nilsson, G. Becker and C. Ostman, Environ. Sci. Technol., 31, 2931-2936 (1997).

    14

    14. H. Carlsson, U. Nilsson and C. Ostman, Environ. Sci. Technol., 34, 3885-3889 (2000).

    15

    15. M. Tamaoki, K. Nishiki, A. Shimazaki, Y. Sasaki and S. Yanagi, Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, Cambridge, MA, 322-326 (1995).

    16

    16. C. K. Yang, H. S. Cha, S. J. Yang, J. H. Kang, J. H. Ahn and K. S. Nam, 27th International Symposium on Photomask Technology, Monterey, CA, 67301D (2007).

    17

    17. Y. Kang, W. Den, H. Bai and F.-H. Ko, J. Chromatogr. A, 1070, 137-145 (2005).

    18

    18. C. J. Salim, H. Liu and J. F. Kennedy, Carbohydr. Polym., 81(3), 640-644 (2010).

    19

    19. M. Tamaoki, K. Nishiki, A. Shimazaki, Y. Sasaki and S. Yanagi, The effect of airborne contaminants in the cleanroom for ULSI manufacturing process, in:Proceedings of the Advanced Semiconductor Manufacturing Conference and Workshop, 322-326 (1995).

    20

    20. A. Marklund, B. Andersson and P. Haglund, Chemosphere, 53(9), 1137-1146 (2003).

    21

    21. N. B. Rana, P. Raghu, E. Sharo and F. Shadman, Appl. Surf. Sci., 205, 160-175 (2003).

    22

    22. S. Tlili, N. Hayeck, S. Gligorovski and H. Wortham, Ind. Eng. Chem. Res., 51, 14665-14672 (2012).

    23

    23. L. I. Nieto-Gligorovski, S. Gligorovski, S. Tlili, X. Fu, B. Temime-Roussel and H. Wortham, J. Electrochem. Soc., 156(4), H290-H297 (2009).

    24

    24. S. M. Thornburg, D. C. McIntyre, A. Y. Liang, S. F. Bender, and R. D. Lujan, Technology Transfer Report 9402208A-XFR, Sematech (1994).

    25

    25. P. Aragon, J. Atienza, and M. D. Climent, Crit. Rev. Anal. Chem., 30, 121-151 (2000).

    26

    26. N. Hayeck, S. Gligorovski, I. Poulet and H. Wortham, Talanta, 122, 63-69 (2014).

    27

    27. T. Otake, J. Yoshinaga and Y. Yanagishiwa, Environ. Sci. Technol., 35, 3099-3102 (2001).

    28

    28. H. Toda, K. Sako, Y. Yagome and T. Nakamura, Anal. Chim. Acta, 519, 213-218 (2004).

    29

    29. P. A. Clausen, V. Hansen, L. Gunnarsen, A. Afshari and P. Wolkoff, Environ. Sci. Technol., 38, 2531-2537 (2004).

    30

    30. A. R. Mastrogiacomo, E. Pierini and L. Sampaolo, Chromatographia, 41, 599-604 (1995).

    31

    31. S. Wi, S. J. Chang, S.-G. Jeong, J. Lee, T. Kim, K.-W. Park, D. R. Lee and S. Kim, Materials, 10, 853, 1-11;doi:10.3390/ma10080853 (2017).

    32

    32. H. K. Yu, J. C. Park and E.-K. Rhee, J. Architect. Institute of Korea Planning and Design, 21(7), 141-148 (2005).

    33

    33. N. S. Chary, A. R. Fernandez-Alba, Trends Anal. Chem., 32, 60-75 (2012).

    34

    34. H. Guo, F. Murray and S. Wilkinson, J. Air & Waste Manage. Assoc. 50, 199-206 (2010).

    35

    35. H. Choi, J. C. Choi, I.-A. Bae, S.-J. Park and M. K. Kim, J. Food. Hyg. Saf., 32(5), 424-433 (2017).

    36

    36. A. M. Malkinson, Cancer Investig., 3(2), 209-211(1985).

    37

    37. H. P. Witschi, Food Chem. Toxicol., 24(10-11), 1127-1130 (1986).

    38

    38. G. Wang, Y. Li, N. Guo, C. Han, D. Liu, D. Li, M. Yang, Y. Peng, Y. Liu, K. Yu and C. Wang, J. Pharm. Biomed. Anal., 167(15) , 30-37 (2019).

    상단으로 이동

    Analytical Science and Technology