• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Enantioselective electrophoretic behavior of lipoic acid in single and dual cyclodextrin systems

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.4, pp.143-152
    https://doi.org/10.5806/AST.2021.34.4.143
    Thi-Anh-Tuyet Le (College of Pharmacy, Kangwon National University)
    Bao-Tan Nguyen (College of Pharmacy, Kangwon National University)
    Thanh Dung Phan (Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam)
    Jong-Seong Kang (College of Pharmacy, Chungnam National University)
    Kyeong Ho Kim (College of Pharmacy, Kangwon National University)
    • Downloaded
    • Viewed

    Abstract

    Capillary electrophoresis (CE) is an effective technique to study chiral recognition because it offers flexibility in adjusting vital factors. Currently, various available cyclodextrins (CDs) can be employed for the chiral separation of numerous analytes. Herein, we investigate the enantioseparation behavior of lipoic acid enantiomers in various types of single and dual CD systems through CE. Additionally, several impacted CE parameters were optimized through the systematic investigation based on the design of experiment (DoE) concept for a single system comprising a heptakis (2,3,6-tri-O-methyl)-β-CD and a dual system containing the combination of the single CD with a sulfated-β-CD. Consequently, absolute enantioresolution was obtained within 15 min on a common standard bare fused-silica capillary (64.5/56 cm in total/effective length, 50/365 μm inner/outer diameter), maintained at 15 oC and at an applied voltage of 24 kV. The optimal background electrolyte consisted of 6 mM heptakis (2,3,6-tri-O-methyl)-β-CD dissolved in the solution of 58 mM borate buffer at pH 10. Furthermore, the results of apparent binding constant experiments indicated that the Senantiomer- heptakis (2,3,6-tri-O-methyl)-β-CD complex exhibited a stronger affinity than its R-enantiomer counterpart. The obtained electrophoretic mobility values could be utilized to interpret the resolution achieved at various CD concentrations and the mobility behavior of the complexes elucidated the migration order of the enantiomers in an electropherogram.

    keywords
    lipoic acid enantiomers, chiral separation, capillary electrophoresis, DoE, apparent binding constant


    Reference

    1

    1. J. Bustamante, J. K. Lodge, L. Marcocci, H. J. Tritschler, L. Packer and B. H. Rihn, Free Radic. Biol. Med., 24(6), 1023-1039 (1998).

    2

    2. A. R. Smith, S. V. Shenvi, M. Widlansky, J. H. Suh and T. M. Hagen, Curr. Med. Chem., 11(9), 1135-1146 (2004).

    3

    3. W. Jones, X. Li, Zhi-chao Qu, L. Perriott, R. R. Whitesell and J. M. May, Free Radical Biology and Medicine, 33(1), 83-93 (2002).

    4

    4. J. H. Suh, R. Moreau, S. H. Heath and T. M. Hagen, Redox Rep., 10(1), 52-60 (2005).

    5

    5. B. Salehi, Y. Berkay Yılmaz, G. Antika, T. Boyunegmez Tumer, M. Fawzi Mahomoodally, D. Lobine, M. Akram, M. Riaz, E. Capanoglu, F. Sharopov, N. Martins, W. C. Cho and J. Sharifi-Rad, Biomolecules, 9(8), 356 (2019).

    6

    6. E. Cure and M. C. Cure, Medical Hypotheses, 143, Article 110185 (2020).

    7

    7. M. Brufani and R. Figliola, Acta Bio Medica, 85(2), 108-115 (2014).

    8

    8. E. Lucarini, E. Trallori, D. Tomassoni, F. Amenta, C. Ghelardini, A. Pacini and L. Di Cesare Mannelli, Antioxidants, 9(8), 749 (2020).

    9

    9. S. Kodama, A. Taga, S. I. Aizawa, T. Kemmei, Y. Honda, K. Suzuki and A. Yamamoto, Electrophoresis, 33(15), 2441-2445 (2012).

    10

    10. Y. Kobayashi, R. Ito and K. Saito, Journal of Pharmaceutical and Biomedical Analysis, 166, 435-439 (2019).

    11

    11. R. Uchida, H. Okamoto, N. Ikuta, K. Terao and T. Hirota, Int. J. Mol. Sci., 16(9), 22781-22794 (2015).

    12

    12. Y. Kobayashi, K. Saito, Y. Iwasaki, R. Ito and H. Nakazawa, Bunseki Kagaku, 61(2), 109-114 (2012).

    13

    13. G. Niebch, B. BüChele, J. Blome, S. Grieb, G. Brandt, P. Kampa, H. H. Raffel, M. Locher, H. O. Borbe, I. Nubert and I. Fleischhauer, Chirality, 9(1), 32-36 (1997).

    14

    14. T. Le, T. Pham, X. Mai, C. Song, S. Woo, C. Jeong, S. Choi, T. D. Phan and K. H. Kim, Analytical Science and Technology, 33(1), 1-10 (2020).

    15

    15. P. K. Sahu, N. R. Ramisetti, T. Cecchi, S. Swain, C. S. Patro and J. Panda, Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611 (2018).

    16

    16. X.-L. Mai, T.-V. Pham, T.-A.-T. Le, B.-T. Nguyen, N. V. T. Nguyen, J.-S. Kang, W. Mar and K. H. Kim, Journal of Separation Science, 43(24), 4480-4487 (2020).

    17

    17. B.-T. Nguyen, T.-A.-T. Le, X.-L. Mai, T. N. V. Nguyen, T. D. Phan, J.-S. Kang and K. H. Kim, Journal of Separation Science, 44, 2029-2036 (2021).

    18

    18. Y. Tanaka and S. Terabe, Journal of Chromatography B, 768(1), 81-92 (2002).

    19

    19. Z. Chen and S. G. Weber, Trends Anal. Chem., 27(9), 738-748 (2008).

    20

    20. K. M. Al Azzam, B. Saad and H. Y. Aboul-Enein, Electrophoresis, 31(17), 2957-2963 (2010).

    21

    21. M. Trentin, T. Carofiglio, R. Fornasier and U. Tonellato, Electrophoresis, 23(24), 4117-4122 (2002).

    상단으로 이동

    Analytical Science and Technology