- P-ISSN 1225-0163
- E-ISSN 2288-8985
Synthetic azo dyes are used extensively in herbal medicines to render the medicines more visually attractive to consumers. This study developed and validated a rapid high-performance liquid chromatography (HPLC) method to determine whether synthetic colorants such as Tartrazine, Auramine O, Metanil yellow, Sunset yellow, and Orange II are used extensively in Typha orientalis. To increase the recovery of the synthetic dyes, this method employed containing 50 mM ammonium acetate in 70 % methanol at first extraction and 100 mM HCl in 70 % methanol at second extraction. Five synthetic pigments in Typha orientalis were separated by gradient elution with a mobile phase consisting of acetonitrile and 50 mM ammonium acetate in distilled water at ultra-violet (UV) detection 428 nm or 500 nm. Additionally, this study established the liquid chromatography tandem mass spectrometry (LC-MS/MS) method to confirm positive samples suspected by HPLC results. The HPLC-UV method had good linearity, indicating r2> 0.999. The recoveries of the samples spiked with three different concentration ranged from 73.8~91.5 %, and relative standard deviation values indicated 0.2~5.2 %. The established LC-MS/MS could successfully identify the synthetic pigments in herbal medicine samples. The study demonstrates that Typha orientalis adulterated by yellowish synthetic dyes can be successfully distinguished when using the HPLC-UV method.
1. B. Esen, T. Oymak and E. Dural, Int. J. Sci. Eng. Res., 9(8), 72-76 (2018).
2. M. Xu, B. Huang, F. Gao, C. Zhai, Y. Yang, L. Li, W. Wang and L. Shi, Front. Pharmcol., 10, Article 1446, 1-8 (2019).
3. K. Rovina, S. Siddiquee and S. M. Shaarani, Crit. Rev. Anal. Chem., 47(4), 309-324 (2017).
4. K. S. Rowe and K. J. Rowe, J. Pediatrics, 125(5), 691-698 (1994).
5. Y. S. Al-Degs, Food Chem., 117(3), 485-490 (2009).
6. T. Nagaraja and T. Desiraju, Food Chem. Toxicol., 31(1), 41-44 (1993).
7. I. S. Khan, M. N. Ali, R. Hamid and S. A. Ganie, Toxicol. Rep., 7, 370-375 (2020).
8. M. Solís, A. Solís, H. I. Pérez, N. Manjarrez and M. Flores, Process Biochem., 47(12), 1723-1748 (2012).
9. K. T. Chung, G. E. Fulk and M. Egan, Appl. Environ. Microbiol., 35(3), 558-562 (1978).
10. R. Anliker, Richardson M., Ed., The Royal Society of Chemistry. London, UK. 166-187 (1986).
11. J. C. Tung, W. C. Huang, J. C. Yang, G.Y. Chen, C. C. Fan, Y. C. Chien, P. S. Lin, S. C. C. Lung and W. C. Chang, Environ. Toxicol., 32(11), 2379-2391 (2017).
12. S. Parodi, L. Santi, P. Russo, A. Albini, D. Vecchio, M. Pala, L. Ottaggio and A. Carbone, J. Toxicol. Environ. Health, 9(5-6), 941-952 (1982).
13. T. N. T. Kim, T. T. Bui, A. T. Pham, V. T. Duong and T. H. G Le, J. Anal. Methods Chem., 2019, Article ID 8639528 (2019).
14. T. I. Tikhomirova, G. R. Ramazanova and V. V. Apyari, Food Chem., 221, 351-355 (2017).
15. G. Karanikolopoulos, A. Gerakis, K. Papadopoulou and I. Mastrantoni, Food Chem., 177, 197-203 (2015).
16. F. Martin, J. M. Oberson, M. Meschiari and C. Munari, Food Chem., 197, 1249-1255 (2016).