- P-ISSN 1225-0163
- E-ISSN 2288-8985
Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.
1. R. M. Smith, Anal. Chem., 54(13), 1399A-1409A (1982).
2. A. Hamins, M. Bundy and S. E. Dillon, J. Fire Prot. Eng., 15(4), 265-285 (2005).
3. A. D. Pert, M. G. Baron and J. W. Birkett, J. Forensic Sci., 51(5), 1033-1049 (2006).
4. S. T. Teng, A. D. Williams and K. Urdal, J. High. Resolut. Chromatogr., 17(6), 469-475 (1994).
5. R. O. Keto, J. Forensic Sci., 40(3), 412-423 (1995).
6. C. H. Wu, C. L. Chen, C. T. Huang, M. R. Lee and C. M. Huang, Anal. Lett., 37(7), 1373-1384 (2004).
7. J. N. Eisenberg and T. E. McKone, Environ. Sci. Technol., 32(21), 3396-3404 (1998).
8. E. Akkaş, L. Akin, H. E. Çubukçu and H. Artuner, Comput. Geosci., 80, 38-48 (2015).
9. M. G. Yıldız, T. Davran-Candan, M. E. Günay and R. Yıldırım, J. CO2 Util., 31, 27-42 (2019).
10. D. C. Mann, J. Forensic Sci., 32(3), 616-628 (1987).
11. J. S. Cramer, The Origins of Logistic Regression, http://dx.doi.org/10.2139/ssrn.360300, Assessed 25 Jan 2003.
12. L. Breiman, M. Lear., 45(1), 5-32 (2001).
13. C. Cortes and V. Vapnik, M. Lear., 20(3), 273-297 (1995).
14. A. Luque, A. Carrasco, A. Martín and A. de las Heras, Pattern Recognit., 91, 216-231 (2019).
15. H. He, Y. Bai, E. A. Garcia and S. Li, ‘ADASYN:Adaptive synthetic sampling approach for imbalanced learning’, IEEE, 2008.