Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Application and evaluation of machine-learning model for fire accelerant classification from GC-MS data of fire residue

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.5, pp.231-239
    https://doi.org/10.5806/AST.2021.34.5.231
    Chihyun Park (Daejeon District Office, National Forensic Service)
    Wooyong Park (Daejeon District Office, National Forensic Service)
    Sookyung Jeon (Daejeon District Office, National Forensic Service)
    Sumin Lee (Daejeon District Office, National Forensic Service)
    Joon-Bae Lee (Daegu District Office, National Forensic Service)
    • Downloaded
    • Viewed

    Abstract

    Detection of fire accelerants from fire residues is critical to determine whether the case was arson or accidental fire. However, to develop a standardized model for determining the presence or absence of fire accelerants was not easy because of high temperature which cause disappearance or combustion of components of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine performances of random forest and support vector machine models.

    keywords
    GC-MS, machine learning, random forest, support vector machine


    Reference

    1

    1. R. M. Smith, Anal. Chem., 54(13), 1399A-1409A (1982).

    2

    2. A. Hamins, M. Bundy and S. E. Dillon, J. Fire Prot. Eng., 15(4), 265-285 (2005).

    3

    3. A. D. Pert, M. G. Baron and J. W. Birkett, J. Forensic Sci., 51(5), 1033-1049 (2006).

    4

    4. S. T. Teng, A. D. Williams and K. Urdal, J. High. Resolut. Chromatogr., 17(6), 469-475 (1994).

    5

    5. R. O. Keto, J. Forensic Sci., 40(3), 412-423 (1995).

    6

    6. C. H. Wu, C. L. Chen, C. T. Huang, M. R. Lee and C. M. Huang, Anal. Lett., 37(7), 1373-1384 (2004).

    7

    7. J. N. Eisenberg and T. E. McKone, Environ. Sci. Technol., 32(21), 3396-3404 (1998).

    8

    8. E. Akkaş, L. Akin, H. E. Çubukçu and H. Artuner, Comput. Geosci., 80, 38-48 (2015).

    9

    9. M. G. Yıldız, T. Davran-Candan, M. E. Günay and R. Yıldırım, J. CO2 Util., 31, 27-42 (2019).

    10

    10. D. C. Mann, J. Forensic Sci., 32(3), 616-628 (1987).

    11

    11. J. S. Cramer, The Origins of Logistic Regression, http://dx.doi.org/10.2139/ssrn.360300, Assessed 25 Jan 2003.

    12

    12. L. Breiman, M. Lear., 45(1), 5-32 (2001).

    13

    13. C. Cortes and V. Vapnik, M. Lear., 20(3), 273-297 (1995).

    14

    14. A. Luque, A. Carrasco, A. Martín and A. de las Heras, Pattern Recognit., 91, 216-231 (2019).

    15

    15. H. He, Y. Bai, E. A. Garcia and S. Li, ‘ADASYN:Adaptive synthetic sampling approach for imbalanced learning’, IEEE, 2008.

    상단으로 이동

    Analytical Science and Technology