- P-ISSN 1225-0163
- E-ISSN 2288-8985
The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ionexchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 − 30, 30 − 90, and 90 − 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3 − were investigated. The results showed that an initial concentration of 25 mg L−1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 oC are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.
1. A. T. M. A. Choudhury and I. R. Kennedy, Communications in Soil Science and Plant Analysis, 36, 1625-39(2005).
2. A. R. B. Sofia, Y. Hala, A. T. Makkulawu, S. F. Hiola, H. Karim, R. N. Iriany, R. Sjahril and O. Jumadi, Earth and Environ. Sci., 299, 012017 (2019).
3. B. Azeem, K. Z. K. Shaari, Z. B. Man, A. Basit and T. H. Thanh, J. Controlled Release, 181, 11-21 (2014).
4. M. S. Aulakh and S. S. Malhi, Advances in Agronomy, 86, 341-409 (2005).
5. K. A. Nelson, S. M. Paniaguab and P. P. Motavallib, Agronomy Journal Abstract Corn., 101, 681-687 (2008).
6. J. A. Ippolito, D. D. Tarkalson and G. A. Lehrsch, Soil Science, 176, 136-142 (2011).
7. S. A. Abdulkareem, E. Muzenda, A. S. Afolabi and J. Kabuba, Arab. J. Sc. Eng., 38, 2263-2272 (2013).
8. A. Amankwah and J. Kabuba, Life Sci. J., 10, 1012-1015 (2013).
9. A. Dziedzicka, B. Sulikowski and M. Ruggiero-Mikołajczyk, Catalysis Today, 259, 50-58 (2016).
10. A. Mažeikienė, M. Valentukevičienė, A. M. Rimeik, A. B. Matuzevičius and R. Dauknys, J. Environ. Eng. Landscape Manage, 16, 38-44 (2008).
11. A. Tressaud, Advanced in Fluorine Science, 2, 1-286(2006).
12. K. Margeta, N. Z. Logar, M. Šiljeg and A. Farkas, IntechOpen, 1-394 (2013).
13. Q. Hu, N. Chen, C. Feng and W. Hu, Appl. Surface Sci., 347, 1-9 (2015).
14. E. Igberase, P. Osifo and A. Ofomaja, Analytical Chemistry, 2017, Article ID 6150209 (2017).
15. L. Zong, F. Liu, D. Chen, X. Zhang, C. Ling and A. Li, Chem. Eng. J., 334, 995-1005 (2018).
16. J. Zolgharnein, K. Dalvand, M. Rastgordani and P. Zolgharnein, Alloys and Compounds, 725, 1006-1017(2017).
17. S. N. do C. Ramos, A. L. P. Xavier, F. S. Teodoro, L. F. Gil and L. V. A. Gurgel, Ind. Crops Prod., 79, 116-130(2016).
18. A. S. Ozcan, B. Erden and A. Ozcan, Colloids Surf. A, 266, 73-81(2005).
19. Y. S. Ho, J. Hazard. Mater., 136, 681-689 (2006).
20. E. Fosso-Kankeu, Physics and Chemistry of the Earth, 105, 170-176 (2018).
21. J. Xu, R. Koivula, W. Zhang, E. Wiikinkoski, S. Hietala and R. Harjula, Hydrometallurgy, 175, 170-178 (2018).
22. A. A. Swelam, M. B. Awad, A. M. A. Salem and A. S. El-Feky, Housing and Building National Research Center, 78, 1-9 (2016).
23. X. Xu, B. Gao, Y. Zhao, S. Chen, X. Tin, Q. Yue, J. Lin and Y. Wang, J. Hazard Mater, 203-204, 86-92 (2012).
24. S. Chatterjee, D. S. Lee, M. W. Lee and S. H. Woo, S.H. J. Hazard. Mater., 166, 208-513 (2009).
25. K. Athanasiadis and B. Helmreich, Water Res., 39, 1527-1532 (2005).
26. S. Gupta and A. Kumar, Appl. Water Sci., 9, 96 (2019).
27. W. Hamdi, F. Gamaoun, D. E. Pelster and M. Effen, Applied and Environmental Soil Sci., 2013, Article ID 597824 (2013).
28. R. A. K. Rao and F Rehman, J. Hazard. Mater., 181, 405-412 (2010).
29. P. Sharma, G. Singh and R. Tomar, J. Colloid Interface Sci., 332, 298-308 (2009).
30. D. Bhardwaj, M. Sharma, P. Sharma and R. Tomar, J. Hazard. Mater., 227-228, 292-300 (2012).
31. H. D. Guan, E. Bestland, C. Y. Zhu, H. L. Zhu, D. Albertsdottir and J. Hutson, J. Hazard. Mater., 183, 616-621(2010).
32. H. Lin, Q. L. Liu, Y. B. Dong, Y. H. He and L. Wang, Microporous Mesoporous Mater., 218, 174-179 (2015).
33. J. Schick, P. Caullet and J. L. Paillaud, Microporous Mesoporous Mater., 132, 395-400 (2010).
34. Y. Zhan, Z. Zhu, J. Lin, Y. Qiu and J. Zhao, J. Environ. Sci., 22, 731-736 (2010).
35. S. Sharifnia, M. A. Khadivi, T. Shojaeimehr and Y. Shavisi, J. Saudi Chem. Soc., 20, S342-S351 (2016).
36. A. Sieczka and E. Koda, Appl. Sci., 6(10), 269 (2016).
37. B. I. Olu-Owolabi, P. N. Diagboya and K. O. Adebowale, J. Environ. Manag., 137, 1-9 (2014).
38. Z. Aksu and E. Kabasakal, Sep. Purif. Technol., 35, 223-240 (2004).
39. M. Alkan, Ö. Demirbas, S. Celikcapa and M. Dogan, J. Hazard. Mater., B116, 135-145 (2004).
40. M. Mahramanlioglu, S. I. Kirbasalar and I. Kizilcikil, Fresenius Environ. Bull., 12, 1483-1491 (2003).