- P-ISSN 1225-0163
- E-ISSN 2288-8985
The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.
1. H. G. Kim, Y. H. Hong, Y. S. Jung, Y. H. Kim and S. Y. Park, J. Radiol. Sci. Technol., 43(6), 481-487 (2020).
2. B. Franco, L. L. Gerald and W. Peter, ‘Encyclopedia of Condensed Matter Physics’, 1st Ed., Elsevier, Amsterdam, 2005.
3. L. Heilbronn, ‘Neutron Properties and Definitions’, NASA, Washington, 2015.
4. R. G. Miller and R. W. Kavanagh, Nucl. Instrum. Methods, 48, 13-27 (1967).
5. A. Omar, S. Burdin, G. Casse, H. V. Zalinge, S. Powel, J. Rees and et al., Radiat. Meas., 122, 121-125 (2019).
6. D. S. McGregor, W. J. McNeil, S. L. Bellinger, T. C. Unruh and J. K. Shultis, Nucl. Instrum. Methods Phys. Res., 608(1), 125-131 (2009).
7. D. S. McGregor and J. K. Shultis, Nucl. Instrum. Methods Phys. Res., 632(1), 167-174 (2011).
8. E. Wilson, M. Anderson, D. Prendergast and D. Cheneler, EPJ Web of Conferences, ANIMMA, Palais des Congrès in Liège, Belgium, 170 (2018).
9. M. K. Drake, ‘Neutron cross sections for cadmium isotopes’, NASA, Washington, 1966.
10. D. J. Wagenaar, K. Parnham, B. Sundal, G. Maehlum, S. Chowdhury, D. Meier, T. Vandehei, M. Szawlowski and B. E. Patt, Proc. SPIE., 6707, 144-153 (2007).
11. J. K. Kim, W. G. Lee, S. Y. Kim, C. H. Shin, K. O. Kim, J. M. Park, D. Y. Jang and J. S. Kang, ‘Simulation and performance test technology development for semiconductor radiation detection instrument fabrication (KAERI/CM-1319/2009)’, KAERI, Daejeon, 2010.
12. K. Iniewski, J. Instrum., 9(11), C11001 (2014).
13. G. Zha, T. Wang, Y. Xu and W. Jie, Wuli, 42(12), 862-869 (2013).
14. JANIS (Java-based nuclear information software), http://www.oecd-nea.org/janis, Assessed 15 December 2021.
15. M. Streicher, D. Goodman, Y. Zhu, S. Brown, S. Kiffand Z. He, IEEE Trans Nucl Sci., 64(7), 1920-1926 (2017).
16. F. H. Attix, ‘Introduction to radiological physics and radiation dosimetry’, John Wiley & Sons, New Jersey, 2008.
17. P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens and F. H. Attix, ‘Fundamentals of ionizing radiation dosimetry’, John Wiley & Sons, New Jersey, 2017.
18. H. D. Rasolonjatovo, T. Shiomi, T. Nakamura, H. Nishizawa, Y. Tsudaka, H. Fujiwara, H. Araki and K. Matsuo, Radiat. Prot. Dosim. 101(1-4), 77-80 (2002).
19. A. M. El-Khatib, M. I. Abbas, M. A. Elzaher, M. S. Badawi, M. T. Alabsy, G. A. Alharshan and D. A. Aloraini, Sci. Rep., 9(1), 16012 (2019).
20. Y. B. Gurov, N. Y. Egorov, D. V. Ponomarev, S. V. Rozov, V. G. Sandukovsky, K. V. Shakhov, E. A. Yakushev and V. M. Zhivun, J. Instrum., 14(11), P11002 (2019).
21. W. Koppert, M. Dietze, S. Velden, J. Steenbergen and H. Jong, Phys. Med. Biol., 64(13), 135012 (2019).
22. R. Rahman, A. Plater, P. Nolan and P. Appleby, Radiat. Prot. Dosim., 154(4), 477-482 (2013).
23. B. A. Brunett, J. C. Lund, J. M. Van Scyoc, N. R. Hilton, E. Y. Lee and R. B. James, ‘Low-Cost Cadmium Zinc Telluride Radiation Detectors Based on Electron-Transport-Only Designs’, Sandia National Laboratories, New Mexico, 1999.