- P-ISSN 1225-0163
- E-ISSN 2288-8985
Blends of elemental Ni and 20 weight % Cr powder were milled for different period in a laboratory attritor. Powder size distribution, microstructure and X-ray diffraction characteristics were investigated as a function of processing period. Saturated magnetization, Ms and coercive force, Hc we also measured and compared with plasma melted ingot to confirm the mechanically alloyed states. Mechanical alloying occurred as a consequence of the partition of powders and the increase of interfacial area driving diffusing of Cr into Ni. However, magnetic properties of chemically homogeneous solid solution like melted ingot has not been observed even though steady state of submicron grain size has been achieved after milling over 15 hrs. Further mechanical alloying period gave refinement of grain size, which resulted in the increase of alloyed layer. It is concluded that homogenization should be controlled by the increase of interfacial area between constitutive powders caused by plastic particle deformation and by the diffusion of Cr within the alloyed phase into Ni-rich phase through lattice defects.